File size: 15,706 Bytes
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
import json
import os

@dataclass
class DimensionConfig:
    """維度配置"""
    name: str
    base_weight: float
    priority_multiplier: Dict[str, float]
    compatibility_matrix: Dict[str, Dict[str, float]]
    threshold_values: Dict[str, float]
    description: str


@dataclass
class ConstraintConfig:
    """約束配置"""
    name: str
    condition_keywords: List[str]
    elimination_threshold: float
    penalty_factors: Dict[str, float]
    exemption_conditions: List[str]
    description: str


@dataclass
class ScoringProfile:
    """評分配置檔"""
    profile_name: str
    dimensions: List[DimensionConfig]
    constraints: List[ConstraintConfig]
    normalization_method: str
    bias_correction_rules: Dict[str, Any]
    ui_preferences: Dict[str, Any]


class DynamicScoringConfig:
    """動態評分配置管理器"""

    def __init__(self, config_path: Optional[str] = None):
        self.config_path = config_path or self._get_default_config_path()
        self.current_profile = self._load_default_profile()
        self.custom_profiles = {}

    def _get_default_config_path(self) -> str:
        """獲取默認配置路徑"""
        return os.path.join(os.path.dirname(__file__), 'scoring_configs')

    def _load_default_profile(self) -> ScoringProfile:
        """載入預設評分配置"""
        # 空間相容性維度配置
        space_dimension = DimensionConfig(
            name="space_compatibility",
            base_weight=0.30,
            priority_multiplier={
                "apartment_living": 1.5,
                "first_time_owner": 1.2,
                "limited_space": 1.4
            },
            compatibility_matrix={
                "apartment": {
                    "toy": 0.95, "small": 0.90, "medium": 0.50,
                    "large": 0.15, "giant": 0.05
                },
                "house_small": {
                    "toy": 0.85, "small": 0.90, "medium": 0.85,
                    "large": 0.60, "giant": 0.30
                },
                "house_medium": {
                    "toy": 0.80, "small": 0.85, "medium": 0.95,
                    "large": 0.85, "giant": 0.60
                },
                "house_large": {
                    "toy": 0.75, "small": 0.80, "medium": 0.90,
                    "large": 0.95, "giant": 0.95
                }
            },
            threshold_values={
                "elimination_threshold": 0.20,
                "warning_threshold": 0.40,
                "good_threshold": 0.70
            },
            description="Evaluates breed size compatibility with living space"
        )

        # 運動相容性維度配置
        exercise_dimension = DimensionConfig(
            name="exercise_compatibility",
            base_weight=0.25,
            priority_multiplier={
                "low_activity": 1.6,
                "high_activity": 1.3,
                "time_limited": 1.4
            },
            compatibility_matrix={
                "low_user": {
                    "low": 1.0, "moderate": 0.70, "high": 0.30, "very_high": 0.10
                },
                "moderate_user": {
                    "low": 0.80, "moderate": 1.0, "high": 0.80, "very_high": 0.50
                },
                "high_user": {
                    "low": 0.60, "moderate": 0.85, "high": 1.0, "very_high": 0.95
                }
            },
            threshold_values={
                "severe_mismatch": 0.25,
                "moderate_mismatch": 0.50,
                "good_match": 0.75
            },
            description="Matches user activity level with breed exercise needs"
        )

        # 噪音相容性維度配置
        noise_dimension = DimensionConfig(
            name="noise_compatibility",
            base_weight=0.15,
            priority_multiplier={
                "apartment_living": 1.8,
                "noise_sensitive": 2.0,
                "quiet_preference": 1.5
            },
            compatibility_matrix={
                "low_tolerance": {
                    "quiet": 1.0, "moderate": 0.60, "high": 0.20, "very_high": 0.05
                },
                "moderate_tolerance": {
                    "quiet": 0.90, "moderate": 1.0, "high": 0.70, "very_high": 0.40
                },
                "high_tolerance": {
                    "quiet": 0.80, "moderate": 0.90, "high": 1.0, "very_high": 0.85
                }
            },
            threshold_values={
                "unacceptable": 0.15,
                "concerning": 0.40,
                "acceptable": 0.70
            },
            description="Matches breed noise levels with user tolerance"
        )

        # 約束配置
        apartment_constraint = ConstraintConfig(
            name="apartment_size_constraint",
            condition_keywords=["apartment", "small space", "studio", "condo"],
            elimination_threshold=0.15,
            penalty_factors={
                "large_breed": 0.70,
                "giant_breed": 0.85,
                "high_exercise": 0.60
            },
            exemption_conditions=["experienced_owner", "large_apartment"],
            description="Eliminates breeds unsuitable for apartment living"
        )

        exercise_constraint = ConstraintConfig(
            name="exercise_mismatch_constraint",
            condition_keywords=["don't exercise", "low activity", "minimal exercise"],
            elimination_threshold=0.20,
            penalty_factors={
                "very_high_exercise": 0.80,
                "working_breed": 0.60,
                "high_energy": 0.70
            },
            exemption_conditions=["dog_park_access", "active_family"],
            description="Prevents high-energy breeds for low-activity users"
        )

        # 偏見修正規則
        bias_correction_rules = {
            "size_bias": {
                "enabled": True,
                "detection_threshold": 0.70,  # 70%以上大型犬觸發修正
                "correction_strength": 0.60,  # 修正強度
                "target_distribution": {
                    "toy": 0.10, "small": 0.25, "medium": 0.40,
                    "large": 0.20, "giant": 0.05
                }
            },
            "popularity_bias": {
                "enabled": True,
                "common_breeds_penalty": 0.05,
                "rare_breeds_bonus": 0.03
            }
        }

        # UI偏好設定
        ui_preferences = {
            "ranking_style": "gradient_badges",
            "score_display": "percentage_with_bars",
            "color_scheme": {
                "excellent": "#22C55E",
                "good": "#F59E0B",
                "moderate": "#6B7280",
                "poor": "#EF4444"
            },
            "animation_enabled": True,
            "detailed_breakdown": True
        }

        return ScoringProfile(
            profile_name="comprehensive_default",
            dimensions=[space_dimension, exercise_dimension, noise_dimension],
            constraints=[apartment_constraint, exercise_constraint],
            normalization_method="sigmoid_compression",
            bias_correction_rules=bias_correction_rules,
            ui_preferences=ui_preferences
        )

    def get_dimension_config(self, dimension_name: str) -> Optional[DimensionConfig]:
        """獲取維度配置"""
        for dim in self.current_profile.dimensions:
            if dim.name == dimension_name:
                return dim
        return None

    def get_constraint_config(self, constraint_name: str) -> Optional[ConstraintConfig]:
        """獲取約束配置"""
        for constraint in self.current_profile.constraints:
            if constraint.name == constraint_name:
                return constraint
        return None

    def calculate_dynamic_weights(self, user_context: Dict[str, Any]) -> Dict[str, float]:
        """根據用戶情境動態計算權重"""
        weights = {}
        total_weight = 0

        for dimension in self.current_profile.dimensions:
            base_weight = dimension.base_weight

            # 根據用戶情境調整權重
            for context_key, multiplier in dimension.priority_multiplier.items():
                if user_context.get(context_key, False):
                    base_weight *= multiplier

            weights[dimension.name] = base_weight
            total_weight += base_weight

        # 正規化權重
        return {k: v / total_weight for k, v in weights.items()}

    def get_compatibility_score(self, dimension_name: str,
                              user_category: str, breed_category: str) -> float:
        """獲取相容性分數"""
        dimension_config = self.get_dimension_config(dimension_name)
        if not dimension_config:
            return 0.5

        matrix = dimension_config.compatibility_matrix
        if user_category in matrix and breed_category in matrix[user_category]:
            return matrix[user_category][breed_category]

        return 0.5  # 預設值

    def should_eliminate_breed(self, constraint_name: str,
                              breed_info: Dict[str, Any],
                              user_input: str) -> tuple[bool, str]:
        """判斷是否應該淘汰品種"""
        constraint_config = self.get_constraint_config(constraint_name)
        if not constraint_config:
            return False, ""

        # 檢查觸發條件
        user_input_lower = user_input.lower()
        triggered = any(keyword in user_input_lower
                       for keyword in constraint_config.condition_keywords)

        if not triggered:
            return False, ""

        # 檢查豁免條件
        exempted = any(condition in user_input_lower
                      for condition in constraint_config.exemption_conditions)

        if exempted:
            return False, "Exempted due to special conditions"

        # 應用淘汰邏輯(具體實現取決於約束類型)
        return self._apply_elimination_logic(constraint_config, breed_info, user_input)

    def _apply_elimination_logic(self, constraint_config: ConstraintConfig,
                               breed_info: Dict[str, Any], user_input: str) -> tuple[bool, str]:
        """應用淘汰邏輯"""
        # 根據約束名稱決定具體邏輯
        if constraint_config.name == "apartment_size_constraint":
            breed_size = breed_info.get('Size', '').lower()
            if any(size in breed_size for size in ['large', 'giant']):
                return True, f"Breed size ({breed_size}) unsuitable for apartment"

        elif constraint_config.name == "exercise_mismatch_constraint":
            exercise_needs = breed_info.get('Exercise Needs', '').lower()
            if any(level in exercise_needs for level in ['very high', 'extreme']):
                return True, f"Exercise needs ({exercise_needs}) exceed user capacity"

        return False, ""

    def get_bias_correction_settings(self) -> Dict[str, Any]:
        """獲取偏見修正設定"""
        return self.current_profile.bias_correction_rules

    def get_ui_preferences(self) -> Dict[str, Any]:
        """獲取UI偏好設定"""
        return self.current_profile.ui_preferences

    def save_custom_profile(self, profile: ScoringProfile, filename: str):
        """保存自定義配置檔"""
        if not os.path.exists(self.config_path):
            os.makedirs(self.config_path)

        filepath = os.path.join(self.config_path, f"{filename}.json")

        # 將配置檔案轉換為JSON格式
        profile_dict = {
            "profile_name": profile.profile_name,
            "dimensions": [self._dimension_to_dict(dim) for dim in profile.dimensions],
            "constraints": [self._constraint_to_dict(cons) for cons in profile.constraints],
            "normalization_method": profile.normalization_method,
            "bias_correction_rules": profile.bias_correction_rules,
            "ui_preferences": profile.ui_preferences
        }

        with open(filepath, 'w', encoding='utf-8') as f:
            json.dump(profile_dict, f, indent=2, ensure_ascii=False)

    def load_custom_profile(self, filename: str) -> Optional[ScoringProfile]:
        """載入自定義配置檔"""
        filepath = os.path.join(self.config_path, f"{filename}.json")

        if not os.path.exists(filepath):
            return None

        try:
            with open(filepath, 'r', encoding='utf-8') as f:
                profile_dict = json.load(f)

            return self._dict_to_profile(profile_dict)
        except Exception as e:
            print(f"Error loading profile {filename}: {str(e)}")
            return None

    def _dimension_to_dict(self, dimension: DimensionConfig) -> Dict[str, Any]:
        """將維度配置轉換為字典"""
        return {
            "name": dimension.name,
            "base_weight": dimension.base_weight,
            "priority_multiplier": dimension.priority_multiplier,
            "compatibility_matrix": dimension.compatibility_matrix,
            "threshold_values": dimension.threshold_values,
            "description": dimension.description
        }

    def _constraint_to_dict(self, constraint: ConstraintConfig) -> Dict[str, Any]:
        """將約束配置轉換為字典"""
        return {
            "name": constraint.name,
            "condition_keywords": constraint.condition_keywords,
            "elimination_threshold": constraint.elimination_threshold,
            "penalty_factors": constraint.penalty_factors,
            "exemption_conditions": constraint.exemption_conditions,
            "description": constraint.description
        }

    def _dict_to_profile(self, profile_dict: Dict[str, Any]) -> ScoringProfile:
        """將字典轉換為評分配置檔"""
        dimensions = [self._dict_to_dimension(dim) for dim in profile_dict["dimensions"]]
        constraints = [self._dict_to_constraint(cons) for cons in profile_dict["constraints"]]

        return ScoringProfile(
            profile_name=profile_dict["profile_name"],
            dimensions=dimensions,
            constraints=constraints,
            normalization_method=profile_dict["normalization_method"],
            bias_correction_rules=profile_dict["bias_correction_rules"],
            ui_preferences=profile_dict["ui_preferences"]
        )

    def _dict_to_dimension(self, dim_dict: Dict[str, Any]) -> DimensionConfig:
        """將字典轉換為維度配置"""
        return DimensionConfig(
            name=dim_dict["name"],
            base_weight=dim_dict["base_weight"],
            priority_multiplier=dim_dict["priority_multiplier"],
            compatibility_matrix=dim_dict["compatibility_matrix"],
            threshold_values=dim_dict["threshold_values"],
            description=dim_dict["description"]
        )

    def _dict_to_constraint(self, cons_dict: Dict[str, Any]) -> ConstraintConfig:
        """將字典轉換為約束配置"""
        return ConstraintConfig(
            name=cons_dict["name"],
            condition_keywords=cons_dict["condition_keywords"],
            elimination_threshold=cons_dict["elimination_threshold"],
            penalty_factors=cons_dict["penalty_factors"],
            exemption_conditions=cons_dict["exemption_conditions"],
            description=cons_dict["description"]
        )

def get_scoring_config() -> DynamicScoringConfig:
    """獲取全局評分配置"""
    return scoring_config


def update_scoring_config(new_config: DynamicScoringConfig):
    """更新全局評分配置"""
    global scoring_config
    scoring_config = new_config