Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,706 Bytes
1e4c9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
import json
import os
@dataclass
class DimensionConfig:
"""維度配置"""
name: str
base_weight: float
priority_multiplier: Dict[str, float]
compatibility_matrix: Dict[str, Dict[str, float]]
threshold_values: Dict[str, float]
description: str
@dataclass
class ConstraintConfig:
"""約束配置"""
name: str
condition_keywords: List[str]
elimination_threshold: float
penalty_factors: Dict[str, float]
exemption_conditions: List[str]
description: str
@dataclass
class ScoringProfile:
"""評分配置檔"""
profile_name: str
dimensions: List[DimensionConfig]
constraints: List[ConstraintConfig]
normalization_method: str
bias_correction_rules: Dict[str, Any]
ui_preferences: Dict[str, Any]
class DynamicScoringConfig:
"""動態評分配置管理器"""
def __init__(self, config_path: Optional[str] = None):
self.config_path = config_path or self._get_default_config_path()
self.current_profile = self._load_default_profile()
self.custom_profiles = {}
def _get_default_config_path(self) -> str:
"""獲取默認配置路徑"""
return os.path.join(os.path.dirname(__file__), 'scoring_configs')
def _load_default_profile(self) -> ScoringProfile:
"""載入預設評分配置"""
# 空間相容性維度配置
space_dimension = DimensionConfig(
name="space_compatibility",
base_weight=0.30,
priority_multiplier={
"apartment_living": 1.5,
"first_time_owner": 1.2,
"limited_space": 1.4
},
compatibility_matrix={
"apartment": {
"toy": 0.95, "small": 0.90, "medium": 0.50,
"large": 0.15, "giant": 0.05
},
"house_small": {
"toy": 0.85, "small": 0.90, "medium": 0.85,
"large": 0.60, "giant": 0.30
},
"house_medium": {
"toy": 0.80, "small": 0.85, "medium": 0.95,
"large": 0.85, "giant": 0.60
},
"house_large": {
"toy": 0.75, "small": 0.80, "medium": 0.90,
"large": 0.95, "giant": 0.95
}
},
threshold_values={
"elimination_threshold": 0.20,
"warning_threshold": 0.40,
"good_threshold": 0.70
},
description="Evaluates breed size compatibility with living space"
)
# 運動相容性維度配置
exercise_dimension = DimensionConfig(
name="exercise_compatibility",
base_weight=0.25,
priority_multiplier={
"low_activity": 1.6,
"high_activity": 1.3,
"time_limited": 1.4
},
compatibility_matrix={
"low_user": {
"low": 1.0, "moderate": 0.70, "high": 0.30, "very_high": 0.10
},
"moderate_user": {
"low": 0.80, "moderate": 1.0, "high": 0.80, "very_high": 0.50
},
"high_user": {
"low": 0.60, "moderate": 0.85, "high": 1.0, "very_high": 0.95
}
},
threshold_values={
"severe_mismatch": 0.25,
"moderate_mismatch": 0.50,
"good_match": 0.75
},
description="Matches user activity level with breed exercise needs"
)
# 噪音相容性維度配置
noise_dimension = DimensionConfig(
name="noise_compatibility",
base_weight=0.15,
priority_multiplier={
"apartment_living": 1.8,
"noise_sensitive": 2.0,
"quiet_preference": 1.5
},
compatibility_matrix={
"low_tolerance": {
"quiet": 1.0, "moderate": 0.60, "high": 0.20, "very_high": 0.05
},
"moderate_tolerance": {
"quiet": 0.90, "moderate": 1.0, "high": 0.70, "very_high": 0.40
},
"high_tolerance": {
"quiet": 0.80, "moderate": 0.90, "high": 1.0, "very_high": 0.85
}
},
threshold_values={
"unacceptable": 0.15,
"concerning": 0.40,
"acceptable": 0.70
},
description="Matches breed noise levels with user tolerance"
)
# 約束配置
apartment_constraint = ConstraintConfig(
name="apartment_size_constraint",
condition_keywords=["apartment", "small space", "studio", "condo"],
elimination_threshold=0.15,
penalty_factors={
"large_breed": 0.70,
"giant_breed": 0.85,
"high_exercise": 0.60
},
exemption_conditions=["experienced_owner", "large_apartment"],
description="Eliminates breeds unsuitable for apartment living"
)
exercise_constraint = ConstraintConfig(
name="exercise_mismatch_constraint",
condition_keywords=["don't exercise", "low activity", "minimal exercise"],
elimination_threshold=0.20,
penalty_factors={
"very_high_exercise": 0.80,
"working_breed": 0.60,
"high_energy": 0.70
},
exemption_conditions=["dog_park_access", "active_family"],
description="Prevents high-energy breeds for low-activity users"
)
# 偏見修正規則
bias_correction_rules = {
"size_bias": {
"enabled": True,
"detection_threshold": 0.70, # 70%以上大型犬觸發修正
"correction_strength": 0.60, # 修正強度
"target_distribution": {
"toy": 0.10, "small": 0.25, "medium": 0.40,
"large": 0.20, "giant": 0.05
}
},
"popularity_bias": {
"enabled": True,
"common_breeds_penalty": 0.05,
"rare_breeds_bonus": 0.03
}
}
# UI偏好設定
ui_preferences = {
"ranking_style": "gradient_badges",
"score_display": "percentage_with_bars",
"color_scheme": {
"excellent": "#22C55E",
"good": "#F59E0B",
"moderate": "#6B7280",
"poor": "#EF4444"
},
"animation_enabled": True,
"detailed_breakdown": True
}
return ScoringProfile(
profile_name="comprehensive_default",
dimensions=[space_dimension, exercise_dimension, noise_dimension],
constraints=[apartment_constraint, exercise_constraint],
normalization_method="sigmoid_compression",
bias_correction_rules=bias_correction_rules,
ui_preferences=ui_preferences
)
def get_dimension_config(self, dimension_name: str) -> Optional[DimensionConfig]:
"""獲取維度配置"""
for dim in self.current_profile.dimensions:
if dim.name == dimension_name:
return dim
return None
def get_constraint_config(self, constraint_name: str) -> Optional[ConstraintConfig]:
"""獲取約束配置"""
for constraint in self.current_profile.constraints:
if constraint.name == constraint_name:
return constraint
return None
def calculate_dynamic_weights(self, user_context: Dict[str, Any]) -> Dict[str, float]:
"""根據用戶情境動態計算權重"""
weights = {}
total_weight = 0
for dimension in self.current_profile.dimensions:
base_weight = dimension.base_weight
# 根據用戶情境調整權重
for context_key, multiplier in dimension.priority_multiplier.items():
if user_context.get(context_key, False):
base_weight *= multiplier
weights[dimension.name] = base_weight
total_weight += base_weight
# 正規化權重
return {k: v / total_weight for k, v in weights.items()}
def get_compatibility_score(self, dimension_name: str,
user_category: str, breed_category: str) -> float:
"""獲取相容性分數"""
dimension_config = self.get_dimension_config(dimension_name)
if not dimension_config:
return 0.5
matrix = dimension_config.compatibility_matrix
if user_category in matrix and breed_category in matrix[user_category]:
return matrix[user_category][breed_category]
return 0.5 # 預設值
def should_eliminate_breed(self, constraint_name: str,
breed_info: Dict[str, Any],
user_input: str) -> tuple[bool, str]:
"""判斷是否應該淘汰品種"""
constraint_config = self.get_constraint_config(constraint_name)
if not constraint_config:
return False, ""
# 檢查觸發條件
user_input_lower = user_input.lower()
triggered = any(keyword in user_input_lower
for keyword in constraint_config.condition_keywords)
if not triggered:
return False, ""
# 檢查豁免條件
exempted = any(condition in user_input_lower
for condition in constraint_config.exemption_conditions)
if exempted:
return False, "Exempted due to special conditions"
# 應用淘汰邏輯(具體實現取決於約束類型)
return self._apply_elimination_logic(constraint_config, breed_info, user_input)
def _apply_elimination_logic(self, constraint_config: ConstraintConfig,
breed_info: Dict[str, Any], user_input: str) -> tuple[bool, str]:
"""應用淘汰邏輯"""
# 根據約束名稱決定具體邏輯
if constraint_config.name == "apartment_size_constraint":
breed_size = breed_info.get('Size', '').lower()
if any(size in breed_size for size in ['large', 'giant']):
return True, f"Breed size ({breed_size}) unsuitable for apartment"
elif constraint_config.name == "exercise_mismatch_constraint":
exercise_needs = breed_info.get('Exercise Needs', '').lower()
if any(level in exercise_needs for level in ['very high', 'extreme']):
return True, f"Exercise needs ({exercise_needs}) exceed user capacity"
return False, ""
def get_bias_correction_settings(self) -> Dict[str, Any]:
"""獲取偏見修正設定"""
return self.current_profile.bias_correction_rules
def get_ui_preferences(self) -> Dict[str, Any]:
"""獲取UI偏好設定"""
return self.current_profile.ui_preferences
def save_custom_profile(self, profile: ScoringProfile, filename: str):
"""保存自定義配置檔"""
if not os.path.exists(self.config_path):
os.makedirs(self.config_path)
filepath = os.path.join(self.config_path, f"{filename}.json")
# 將配置檔案轉換為JSON格式
profile_dict = {
"profile_name": profile.profile_name,
"dimensions": [self._dimension_to_dict(dim) for dim in profile.dimensions],
"constraints": [self._constraint_to_dict(cons) for cons in profile.constraints],
"normalization_method": profile.normalization_method,
"bias_correction_rules": profile.bias_correction_rules,
"ui_preferences": profile.ui_preferences
}
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(profile_dict, f, indent=2, ensure_ascii=False)
def load_custom_profile(self, filename: str) -> Optional[ScoringProfile]:
"""載入自定義配置檔"""
filepath = os.path.join(self.config_path, f"{filename}.json")
if not os.path.exists(filepath):
return None
try:
with open(filepath, 'r', encoding='utf-8') as f:
profile_dict = json.load(f)
return self._dict_to_profile(profile_dict)
except Exception as e:
print(f"Error loading profile {filename}: {str(e)}")
return None
def _dimension_to_dict(self, dimension: DimensionConfig) -> Dict[str, Any]:
"""將維度配置轉換為字典"""
return {
"name": dimension.name,
"base_weight": dimension.base_weight,
"priority_multiplier": dimension.priority_multiplier,
"compatibility_matrix": dimension.compatibility_matrix,
"threshold_values": dimension.threshold_values,
"description": dimension.description
}
def _constraint_to_dict(self, constraint: ConstraintConfig) -> Dict[str, Any]:
"""將約束配置轉換為字典"""
return {
"name": constraint.name,
"condition_keywords": constraint.condition_keywords,
"elimination_threshold": constraint.elimination_threshold,
"penalty_factors": constraint.penalty_factors,
"exemption_conditions": constraint.exemption_conditions,
"description": constraint.description
}
def _dict_to_profile(self, profile_dict: Dict[str, Any]) -> ScoringProfile:
"""將字典轉換為評分配置檔"""
dimensions = [self._dict_to_dimension(dim) for dim in profile_dict["dimensions"]]
constraints = [self._dict_to_constraint(cons) for cons in profile_dict["constraints"]]
return ScoringProfile(
profile_name=profile_dict["profile_name"],
dimensions=dimensions,
constraints=constraints,
normalization_method=profile_dict["normalization_method"],
bias_correction_rules=profile_dict["bias_correction_rules"],
ui_preferences=profile_dict["ui_preferences"]
)
def _dict_to_dimension(self, dim_dict: Dict[str, Any]) -> DimensionConfig:
"""將字典轉換為維度配置"""
return DimensionConfig(
name=dim_dict["name"],
base_weight=dim_dict["base_weight"],
priority_multiplier=dim_dict["priority_multiplier"],
compatibility_matrix=dim_dict["compatibility_matrix"],
threshold_values=dim_dict["threshold_values"],
description=dim_dict["description"]
)
def _dict_to_constraint(self, cons_dict: Dict[str, Any]) -> ConstraintConfig:
"""將字典轉換為約束配置"""
return ConstraintConfig(
name=cons_dict["name"],
condition_keywords=cons_dict["condition_keywords"],
elimination_threshold=cons_dict["elimination_threshold"],
penalty_factors=cons_dict["penalty_factors"],
exemption_conditions=cons_dict["exemption_conditions"],
description=cons_dict["description"]
)
def get_scoring_config() -> DynamicScoringConfig:
"""獲取全局評分配置"""
return scoring_config
def update_scoring_config(new_config: DynamicScoringConfig):
"""更新全局評分配置"""
global scoring_config
scoring_config = new_config
|