Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,353 Bytes
1e4c9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import json
import sqlite3
import numpy as np
from typing import Dict, List, Tuple, Any, Optional, Union
from dataclasses import dataclass, field, asdict
from enum import Enum
import os
import traceback
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
class DataQuality(Enum):
"""資料品質等級"""
HIGH = "high" # 完整且可靠的資料
MEDIUM = "medium" # 部分資料或推斷資料
LOW = "low" # 不完整或不確定的資料
UNKNOWN = "unknown" # 未知或缺失資料
@dataclass
class BreedStandardization:
"""品種標準化資料結構"""
canonical_name: str
display_name: str
aliases: List[str] = field(default_factory=list)
size_category: int = 1 # 1=tiny, 2=small, 3=medium, 4=large, 5=giant
exercise_level: int = 2 # 1=low, 2=moderate, 3=high, 4=very_high
noise_level: int = 2 # 1=low, 2=moderate, 3=high
care_complexity: int = 2 # 1=low, 2=moderate, 3=high
child_compatibility: float = 0.5 # 0=no, 0.5=unknown, 1=yes
data_quality_scores: Dict[str, DataQuality] = field(default_factory=dict)
confidence_flags: Dict[str, float] = field(default_factory=dict)
@dataclass
class ConfigurationSettings:
"""配置設定結構"""
scoring_weights: Dict[str, float] = field(default_factory=dict)
calibration_settings: Dict[str, Any] = field(default_factory=dict)
constraint_thresholds: Dict[str, float] = field(default_factory=dict)
semantic_model_config: Dict[str, Any] = field(default_factory=dict)
data_imputation_rules: Dict[str, Any] = field(default_factory=dict)
debug_mode: bool = False
version: str = "1.0.0"
class ConfigManager:
"""
中央化配置和資料標準化管理系統
處理品種資料標準化、配置管理和資料品質評估
"""
def __init__(self, config_file: Optional[str] = None):
"""初始化配置管理器"""
self.config_file = config_file or "config.json"
self.breed_standardization = {}
self.configuration = ConfigurationSettings()
self.breed_aliases = {}
self._load_default_configuration()
self._initialize_breed_standardization()
# 嘗試載入自定義配置
if os.path.exists(self.config_file):
self._load_configuration()
def _load_default_configuration(self):
"""載入預設配置"""
self.configuration = ConfigurationSettings(
scoring_weights={
'activity_compatibility': 0.35,
'noise_compatibility': 0.25,
'spatial_compatibility': 0.15,
'family_compatibility': 0.10,
'maintenance_compatibility': 0.10,
'size_compatibility': 0.05
},
calibration_settings={
'target_range_min': 0.45,
'target_range_max': 0.95,
'min_effective_range': 0.3,
'auto_calibration': True,
'tie_breaking_enabled': True
},
constraint_thresholds={
'apartment_size_limit': 3, # 最大允許尺寸 (medium)
'high_exercise_threshold': 3, # 高運動需求閾值
'quiet_noise_limit': 2, # 安靜環境噪音限制
'child_safety_threshold': 0.8 # 兒童安全最低分數
},
semantic_model_config={
'model_name': 'all-MiniLM-L6-v2',
'fallback_models': ['all-mpnet-base-v2', 'all-MiniLM-L12-v2'],
'similarity_threshold': 0.5,
'cache_embeddings': True
},
data_imputation_rules={
'noise_level_defaults': {
'terrier': 'high',
'hound': 'high',
'herding': 'moderate',
'toy': 'moderate',
'working': 'moderate',
'sporting': 'moderate',
'non_sporting': 'low',
'unknown': 'moderate'
},
'exercise_level_defaults': {
'working': 'high',
'sporting': 'high',
'herding': 'high',
'terrier': 'moderate',
'hound': 'moderate',
'toy': 'low',
'non_sporting': 'moderate',
'unknown': 'moderate'
}
},
debug_mode=False,
version="1.0.0"
)
def _initialize_breed_standardization(self):
"""初始化品種標準化"""
try:
# 獲取所有品種
breeds = self._get_all_breeds()
for breed in breeds:
standardized = self._standardize_breed_data(breed)
self.breed_standardization[breed] = standardized
# 建立別名映射
for alias in standardized.aliases:
self.breed_aliases[alias.lower()] = breed
print(f"Initialized standardization for {len(self.breed_standardization)} breeds")
except Exception as e:
print(f"Error initializing breed standardization: {str(e)}")
print(traceback.format_exc())
def _get_all_breeds(self) -> List[str]:
"""獲取所有品種清單"""
try:
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog")
breeds = [row[0] for row in cursor.fetchall()]
cursor.close()
conn.close()
return breeds
except Exception as e:
print(f"Error getting breed list: {str(e)}")
return []
def _standardize_breed_data(self, breed: str) -> BreedStandardization:
"""標準化品種資料"""
try:
# 基本資訊
breed_info = get_dog_description(breed) or {}
health_info = breed_health_info.get(breed, {})
noise_info = breed_noise_info.get(breed, {})
# 建立標準化結構
canonical_name = breed
display_name = breed.replace('_', ' ')
aliases = self._generate_breed_aliases(breed)
# 標準化分類數據
size_category = self._standardize_size(breed_info.get('Size', ''))
exercise_level = self._standardize_exercise_needs(breed_info.get('Exercise Needs', ''))
noise_level = self._standardize_noise_level(noise_info.get('noise_level', ''))
care_complexity = self._standardize_care_level(breed_info.get('Care Level', ''))
child_compatibility = self._standardize_child_compatibility(
breed_info.get('Good with Children', '')
)
# 評估資料品質
data_quality_scores = self._assess_data_quality(breed_info, health_info, noise_info)
confidence_flags = self._calculate_confidence_flags(breed_info, health_info, noise_info)
return BreedStandardization(
canonical_name=canonical_name,
display_name=display_name,
aliases=aliases,
size_category=size_category,
exercise_level=exercise_level,
noise_level=noise_level,
care_complexity=care_complexity,
child_compatibility=child_compatibility,
data_quality_scores=data_quality_scores,
confidence_flags=confidence_flags
)
except Exception as e:
print(f"Error standardizing breed {breed}: {str(e)}")
return BreedStandardization(
canonical_name=breed,
display_name=breed.replace('_', ' '),
aliases=self._generate_breed_aliases(breed)
)
def _generate_breed_aliases(self, breed: str) -> List[str]:
"""生成品種別名"""
aliases = []
display_name = breed.replace('_', ' ')
# 基本別名
aliases.append(display_name.lower())
aliases.append(breed.lower())
# 常見縮寫和變體
breed_aliases_map = {
'German_Shepherd': ['gsd', 'german shepherd dog', 'alsatian'],
'Labrador_Retriever': ['lab', 'labrador', 'retriever'],
'Golden_Retriever': ['golden', 'goldie'],
'Border_Collie': ['border', 'collie'],
'Yorkshire_Terrier': ['yorkie', 'york', 'yorkshire'],
'French_Bulldog': ['frenchie', 'french bull', 'bouledogue français'],
'Boston_Terrier': ['boston bull', 'american gentleman'],
'Cavalier_King_Charles_Spaniel': ['cavalier', 'ckcs', 'king charles'],
'American_Staffordshire_Terrier': ['amstaff', 'american staff'],
'Jack_Russell_Terrier': ['jrt', 'jack russell', 'parson russell'],
'Shih_Tzu': ['shih tzu', 'lion dog'],
'Bichon_Frise': ['bichon', 'powder puff'],
'Cocker_Spaniel': ['cocker', 'english cocker', 'american cocker']
}
if breed in breed_aliases_map:
aliases.extend(breed_aliases_map[breed])
# 移除重複
return list(set(aliases))
def _standardize_size(self, size_str: str) -> int:
"""標準化體型分類"""
size_mapping = {
'tiny': 1, 'toy': 1,
'small': 2, 'little': 2, 'compact': 2,
'medium': 3, 'moderate': 3, 'average': 3,
'large': 4, 'big': 4,
'giant': 5, 'huge': 5, 'extra large': 5
}
size_lower = size_str.lower()
for key, value in size_mapping.items():
if key in size_lower:
return value
return 3 # 預設為 medium
def _standardize_exercise_needs(self, exercise_str: str) -> int:
"""標準化運動需求"""
exercise_mapping = {
'low': 1, 'minimal': 1, 'light': 1,
'moderate': 2, 'average': 2, 'medium': 2, 'regular': 2,
'high': 3, 'active': 3, 'vigorous': 3,
'very high': 4, 'extreme': 4, 'intense': 4
}
exercise_lower = exercise_str.lower()
for key, value in exercise_mapping.items():
if key in exercise_lower:
return value
return 2 # 預設為 moderate
def _standardize_noise_level(self, noise_str: str) -> int:
"""標準化噪音水平"""
noise_mapping = {
'low': 1, 'quiet': 1, 'silent': 1, 'minimal': 1,
'moderate': 2, 'average': 2, 'medium': 2, 'occasional': 2,
'high': 3, 'loud': 3, 'vocal': 3, 'frequent': 3
}
noise_lower = noise_str.lower()
for key, value in noise_mapping.items():
if key in noise_lower:
return value
return 2 # 預設為 moderate
def _standardize_care_level(self, care_str: str) -> int:
"""標準化護理複雜度"""
care_mapping = {
'low': 1, 'easy': 1, 'simple': 1, 'minimal': 1,
'moderate': 2, 'average': 2, 'medium': 2, 'regular': 2,
'high': 3, 'complex': 3, 'intensive': 3, 'demanding': 3
}
care_lower = care_str.lower()
for key, value in care_mapping.items():
if key in care_lower:
return value
return 2 # 預設為 moderate
def _standardize_child_compatibility(self, child_str: str) -> float:
"""標準化兒童相容性"""
if child_str.lower() == 'yes':
return 1.0
elif child_str.lower() == 'no':
return 0.0
else:
return 0.5 # 未知或不確定
def _assess_data_quality(self, breed_info: Dict, health_info: Dict,
noise_info: Dict) -> Dict[str, DataQuality]:
"""評估資料品質"""
quality_scores = {}
# 基本資訊品質
if breed_info:
required_fields = ['Size', 'Exercise Needs', 'Temperament', 'Good with Children']
complete_fields = sum(1 for field in required_fields if breed_info.get(field))
if complete_fields >= 4:
quality_scores['basic_info'] = DataQuality.HIGH
elif complete_fields >= 2:
quality_scores['basic_info'] = DataQuality.MEDIUM
else:
quality_scores['basic_info'] = DataQuality.LOW
else:
quality_scores['basic_info'] = DataQuality.UNKNOWN
# 健康資訊品質
if health_info and health_info.get('health_notes'):
quality_scores['health_info'] = DataQuality.HIGH
elif health_info:
quality_scores['health_info'] = DataQuality.MEDIUM
else:
quality_scores['health_info'] = DataQuality.UNKNOWN
# 噪音資訊品質
if noise_info and noise_info.get('noise_level'):
quality_scores['noise_info'] = DataQuality.HIGH
else:
quality_scores['noise_info'] = DataQuality.LOW
return quality_scores
def _calculate_confidence_flags(self, breed_info: Dict, health_info: Dict,
noise_info: Dict) -> Dict[str, float]:
"""計算信心度標記"""
confidence_flags = {}
# 基本資訊信心度
basic_confidence = 0.8 if breed_info else 0.2
if breed_info and breed_info.get('Description'):
basic_confidence += 0.1
confidence_flags['basic_info'] = min(1.0, basic_confidence)
# 健康資訊信心度
health_confidence = 0.7 if health_info else 0.3
confidence_flags['health_info'] = health_confidence
# 噪音資訊信心度
noise_confidence = 0.8 if noise_info else 0.4
confidence_flags['noise_info'] = noise_confidence
# 整體信心度
confidence_flags['overall'] = np.mean(list(confidence_flags.values()))
return confidence_flags
def get_standardized_breed_data(self, breed: str) -> Optional[BreedStandardization]:
"""獲取標準化品種資料"""
# 嘗試直接匹配
if breed in self.breed_standardization:
return self.breed_standardization[breed]
# 嘗試別名匹配
breed_lower = breed.lower()
if breed_lower in self.breed_aliases:
canonical_breed = self.breed_aliases[breed_lower]
return self.breed_standardization.get(canonical_breed)
# 模糊匹配
for alias, canonical_breed in self.breed_aliases.items():
if breed_lower in alias or alias in breed_lower:
return self.breed_standardization.get(canonical_breed)
return None
def apply_data_imputation(self, breed: str) -> BreedStandardization:
"""應用資料插補規則"""
try:
standardized = self.get_standardized_breed_data(breed)
if not standardized:
return BreedStandardization(canonical_name=breed, display_name=breed.replace('_', ' '))
imputation_rules = self.configuration.data_imputation_rules
# 噪音水平插補
if standardized.noise_level == 2: # moderate (可能是預設值)
breed_group = self._determine_breed_group(breed)
noise_defaults = imputation_rules.get('noise_level_defaults', {})
if breed_group in noise_defaults:
imputed_noise = self._standardize_noise_level(noise_defaults[breed_group])
standardized.noise_level = imputed_noise
standardized.confidence_flags['noise_info'] *= 0.7 # 降低信心度
# 運動需求插補
if standardized.exercise_level == 2: # moderate (可能是預設值)
breed_group = self._determine_breed_group(breed)
exercise_defaults = imputation_rules.get('exercise_level_defaults', {})
if breed_group in exercise_defaults:
imputed_exercise = self._standardize_exercise_needs(exercise_defaults[breed_group])
standardized.exercise_level = imputed_exercise
standardized.confidence_flags['basic_info'] *= 0.8 # 降低信心度
return standardized
except Exception as e:
print(f"Error applying data imputation for {breed}: {str(e)}")
return self.get_standardized_breed_data(breed) or BreedStandardization(
canonical_name=breed, display_name=breed.replace('_', ' ')
)
def _determine_breed_group(self, breed: str) -> str:
"""確定品種群組"""
breed_lower = breed.lower()
if 'terrier' in breed_lower:
return 'terrier'
elif 'hound' in breed_lower:
return 'hound'
elif any(word in breed_lower for word in ['shepherd', 'collie', 'cattle', 'sheepdog']):
return 'herding'
elif any(word in breed_lower for word in ['retriever', 'pointer', 'setter', 'spaniel']):
return 'sporting'
elif any(word in breed_lower for word in ['mastiff', 'great', 'rottweiler', 'akita']):
return 'working'
elif any(word in breed_lower for word in ['toy', 'pug', 'chihuahua', 'papillon']):
return 'toy'
else:
return 'unknown'
def _load_configuration(self):
"""載入配置檔案"""
try:
with open(self.config_file, 'r', encoding='utf-8') as f:
config_data = json.load(f)
# 更新配置
if 'scoring_weights' in config_data:
self.configuration.scoring_weights.update(config_data['scoring_weights'])
if 'calibration_settings' in config_data:
self.configuration.calibration_settings.update(config_data['calibration_settings'])
if 'constraint_thresholds' in config_data:
self.configuration.constraint_thresholds.update(config_data['constraint_thresholds'])
if 'semantic_model_config' in config_data:
self.configuration.semantic_model_config.update(config_data['semantic_model_config'])
if 'data_imputation_rules' in config_data:
self.configuration.data_imputation_rules.update(config_data['data_imputation_rules'])
if 'debug_mode' in config_data:
self.configuration.debug_mode = config_data['debug_mode']
print(f"Configuration loaded from {self.config_file}")
except Exception as e:
print(f"Error loading configuration: {str(e)}")
def save_configuration(self):
"""儲存配置檔案"""
try:
config_data = asdict(self.configuration)
with open(self.config_file, 'w', encoding='utf-8') as f:
json.dump(config_data, f, indent=2, ensure_ascii=False)
print(f"Configuration saved to {self.config_file}")
except Exception as e:
print(f"Error saving configuration: {str(e)}")
def get_configuration(self) -> ConfigurationSettings:
"""獲取當前配置"""
return self.configuration
def update_configuration(self, updates: Dict[str, Any]):
"""更新配置"""
try:
for key, value in updates.items():
if hasattr(self.configuration, key):
setattr(self.configuration, key, value)
print(f"Configuration updated: {list(updates.keys())}")
except Exception as e:
print(f"Error updating configuration: {str(e)}")
def get_breed_mapping_summary(self) -> Dict[str, Any]:
"""獲取品種映射摘要"""
try:
total_breeds = len(self.breed_standardization)
total_aliases = len(self.breed_aliases)
# 資料品質分布
quality_distribution = {}
for breed_data in self.breed_standardization.values():
for category, quality in breed_data.data_quality_scores.items():
if category not in quality_distribution:
quality_distribution[category] = {}
quality_name = quality.value
quality_distribution[category][quality_name] = (
quality_distribution[category].get(quality_name, 0) + 1
)
# 信心度統計
confidence_stats = {}
for breed_data in self.breed_standardization.values():
for category, confidence in breed_data.confidence_flags.items():
if category not in confidence_stats:
confidence_stats[category] = []
confidence_stats[category].append(confidence)
confidence_averages = {
category: np.mean(values) for category, values in confidence_stats.items()
}
return {
'total_breeds': total_breeds,
'total_aliases': total_aliases,
'quality_distribution': quality_distribution,
'confidence_averages': confidence_averages,
'configuration_version': self.configuration.version
}
except Exception as e:
print(f"Error generating breed mapping summary: {str(e)}")
return {'error': str(e)}
_config_manager = None
def get_config_manager() -> ConfigManager:
"""獲取全局配置管理器"""
global _config_manager
if _config_manager is None:
_config_manager = ConfigManager()
return _config_manager
def get_standardized_breed_data(breed: str) -> Optional[BreedStandardization]:
"""獲取標準化品種資料"""
manager = get_config_manager()
return manager.get_standardized_breed_data(breed)
def get_breed_with_imputation(breed: str) -> BreedStandardization:
"""獲取應用補進後的品種資料"""
manager = get_config_manager()
return manager.apply_data_imputation(breed)
def get_system_configuration() -> ConfigurationSettings:
"""系統配置"""
manager = get_config_manager()
return manager.get_configuration()
|