File size: 22,997 Bytes
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import math
from typing import Dict, Any
from dataclasses import dataclass

@dataclass
class UserPreferences:
    """使用者偏好設定的資料結構"""
    living_space: str  # "apartment", "house_small", "house_large"
    yard_access: str  # "no_yard", "shared_yard", "private_yard"
    exercise_time: int  # minutes per day
    exercise_type: str  # "light_walks", "moderate_activity", "active_training"
    grooming_commitment: str  # "low", "medium", "high"
    experience_level: str  # "beginner", "intermediate", "advanced"
    time_availability: str  # "limited", "moderate", "flexible"
    has_children: bool
    children_age: str  # "toddler", "school_age", "teenager"
    noise_tolerance: str  # "low", "medium", "high"
    space_for_play: bool
    other_pets: bool
    climate: str  # "cold", "moderate", "hot"
    health_sensitivity: str = "medium"
    barking_acceptance: str = None
    size_preference: str = "no_preference"  # "no_preference", "small", "medium", "large", "giant"
    training_commitment: str = "medium"  # "low", "medium", "high" - 訓練投入程度
    living_environment: str = "ground_floor"  # "ground_floor", "with_elevator", "walk_up" - 居住環境細節

    def __post_init__(self):
        if self.barking_acceptance is None:
            self.barking_acceptance = self.noise_tolerance


class BonusPenaltyEngine:
    """
    加分扣分引擎類別
    負責處理所有品種加分機制、額外評估因素和分數分布優化
    """
    
    def __init__(self):
        """初始化加分扣分引擎"""
        pass
    
    @staticmethod
    def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
        """
        計算品種額外加分
        
        Args:
            breed_info: 品種資訊字典
            user_prefs: 使用者偏好設定
            
        Returns:
            float: 品種加分 (-0.25 到 0.5 之間)
        """
        bonus = 0.0
        temperament = breed_info.get('Temperament', '').lower()

        # 1. 壽命加分(最高0.05)
        try:
            lifespan = breed_info.get('Lifespan', '10-12 years')
            years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
            longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
            bonus += longevity_bonus
        except:
            pass

        # 2. 性格特徵加分(最高0.15)
        positive_traits = {
            'friendly': 0.05,
            'gentle': 0.05,
            'patient': 0.05,
            'intelligent': 0.04,
            'adaptable': 0.04,
            'affectionate': 0.04,
            'easy-going': 0.03,
            'calm': 0.03
        }

        negative_traits = {
            'aggressive': -0.08,
            'stubborn': -0.06,
            'dominant': -0.06,
            'aloof': -0.04,
            'nervous': -0.05,
            'protective': -0.04
        }

        personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
        personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
        bonus += max(-0.15, min(0.15, personality_score))

        # 3. 適應性加分(最高0.1)
        adaptability_bonus = 0.0
        if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
            adaptability_bonus += 0.05
        if 'adaptable' in temperament or 'versatile' in temperament:
            adaptability_bonus += 0.05
        bonus += min(0.1, adaptability_bonus)

        # 4. 家庭相容性(最高0.15)
        if user_prefs.has_children:
            family_traits = {
                'good with children': 0.06,
                'patient': 0.05,
                'gentle': 0.05,
                'tolerant': 0.04,
                'playful': 0.03
            }
            unfriendly_traits = {
                'aggressive': -0.08,
                'nervous': -0.07,
                'protective': -0.06,
                'territorial': -0.05
            }

            # 年齡評估
            age_adjustments = {
                'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
                'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
                'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
            }

            adj = age_adjustments.get(user_prefs.children_age,
                                    {'bonus_mult': 1.0, 'penalty_mult': 1.0})

            family_bonus = sum(value for trait, value in family_traits.items()
                              if trait in temperament) * adj['bonus_mult']
            family_penalty = sum(value for trait, value in unfriendly_traits.items()
                               if trait in temperament) * adj['penalty_mult']

            bonus += min(0.15, max(-0.2, family_bonus + family_penalty))

        # 5. 專門技能加分(最高0.1)
        skill_bonus = 0.0
        special_abilities = {
            'working': 0.03,
            'herding': 0.03,
            'hunting': 0.03,
            'tracking': 0.03,
            'agility': 0.02
        }
        for ability, value in special_abilities.items():
            if ability in temperament.lower():
                skill_bonus += value
        bonus += min(0.1, skill_bonus)

        # 6. 適應性評估(增強版)
        adaptability_bonus = 0.0
        if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
            adaptability_bonus += 0.08  # 小型犬更適合公寓

        # 環境適應性評估
        if 'adaptable' in temperament or 'versatile' in temperament:
            if user_prefs.living_space == "apartment":
                adaptability_bonus += 0.10  # 適應性在公寓環境更重要
            else:
                adaptability_bonus += 0.05  # 其他環境仍有加分

        # 氣候適應性
        description = breed_info.get('Description', '').lower()
        climate = user_prefs.climate
        if climate == 'hot':
            if 'heat tolerant' in description or 'warm climate' in description:
                adaptability_bonus += 0.08
            elif 'thick coat' in description or 'cold climate' in description:
                adaptability_bonus -= 0.10
        elif climate == 'cold':
            if 'thick coat' in description or 'cold climate' in description:
                adaptability_bonus += 0.08
            elif 'heat tolerant' in description or 'short coat' in description:
                adaptability_bonus -= 0.10

        bonus += min(0.15, adaptability_bonus)

        return min(0.5, max(-0.25, bonus))

    @staticmethod
    def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
        """
        計算額外的評估因素,結合品種特性與使用者需求的全面評估系統

        1. 多功能性評估 - 品種的多樣化能力
        2. 訓練性評估 - 學習和服從能力
        3. 能量水平評估 - 活力和運動需求
        4. 美容需求評估 - 護理和維護需求
        5. 社交需求評估 - 與人互動的需求程度
        6. 氣候適應性 - 對環境的適應能力
        7. 運動類型匹配 - 與使用者運動習慣的契合度
        8. 生活方式適配 - 與使用者日常生活的匹配度
        """
        factors = {
            'versatility': 0.0,        # 多功能性
            'trainability': 0.0,       # 可訓練度
            'energy_level': 0.0,       # 能量水平
            'grooming_needs': 0.0,     # 美容需求
            'social_needs': 0.0,       # 社交需求
            'weather_adaptability': 0.0,# 氣候適應性
            'exercise_match': 0.0,     # 運動匹配度
            'lifestyle_fit': 0.0       # 生活方式適配度
        }

        temperament = breed_info.get('Temperament', '').lower()
        description = breed_info.get('Description', '').lower()
        size = breed_info.get('Size', 'Medium')

        # 1. 多功能性評估 - 加強品種用途評估
        versatile_traits = {
            'intelligent': 0.25,
            'adaptable': 0.25,
            'trainable': 0.20,
            'athletic': 0.15,
            'versatile': 0.15
        }

        working_roles = {
            'working': 0.20,
            'herding': 0.15,
            'hunting': 0.15,
            'sporting': 0.15,
            'companion': 0.10
        }

        # 計算特質分數
        trait_score = sum(value for trait, value in versatile_traits.items()
                         if trait in temperament)

        # 計算角色分數
        role_score = sum(value for role, value in working_roles.items()
                        if role in description)

        # 根據使用者需求調整多功能性評分
        purpose_traits = {
            'light_walks': ['calm', 'gentle', 'easy-going'],
            'moderate_activity': ['adaptable', 'balanced', 'versatile'],
            'active_training': ['intelligent', 'trainable', 'working']
        }

        if user_prefs.exercise_type in purpose_traits:
            matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type]
                                if trait in temperament)
            trait_score += matching_traits * 0.15

        factors['versatility'] = min(1.0, trait_score + role_score)

        # 2. 訓練性評估
        trainable_traits = {
            'intelligent': 0.3,
            'eager to please': 0.3,
            'trainable': 0.2,
            'quick learner': 0.2,
            'obedient': 0.2
        }

        base_trainability = sum(value for trait, value in trainable_traits.items()
                              if trait in temperament)

        # 根據使用者經驗調整訓練性評分
        experience_multipliers = {
            'beginner': 1.2,    # 新手更需要容易訓練的狗
            'intermediate': 1.0,
            'advanced': 0.8     # 專家能處理較難訓練的狗
        }

        factors['trainability'] = min(1.0, base_trainability *
                                    experience_multipliers.get(user_prefs.experience_level, 1.0))

        # 3. 能量水平評估
        exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
        energy_levels = {
            'VERY HIGH': {
                'score': 1.0,
                'min_exercise': 120,
                'ideal_exercise': 150
            },
            'HIGH': {
                'score': 0.8,
                'min_exercise': 90,
                'ideal_exercise': 120
            },
            'MODERATE': {
                'score': 0.6,
                'min_exercise': 60,
                'ideal_exercise': 90
            },
            'LOW': {
                'score': 0.4,
                'min_exercise': 30,
                'ideal_exercise': 60
            }
        }

        breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE'])

        # 計算運動時間匹配度
        if user_prefs.exercise_time >= breed_energy['ideal_exercise']:
            energy_score = breed_energy['score']
        else:
            # 如果運動時間不足,按比例降低分數
            deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise'])
            energy_score = breed_energy['score'] * deficit_ratio

        factors['energy_level'] = energy_score

        # 4. 美容需求評估
        grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
        grooming_levels = {
            'HIGH': 1.0,
            'MODERATE': 0.6,
            'LOW': 0.3
        }

        # 特殊毛髮類型評估
        coat_adjustments = 0
        if 'long coat' in description:
            coat_adjustments += 0.2
        if 'double coat' in description:
            coat_adjustments += 0.15
        if 'curly' in description:
            coat_adjustments += 0.15

        # 根據使用者承諾度調整
        commitment_multipliers = {
            'low': 1.5,     # 低承諾度時加重美容需求的影響
            'medium': 1.0,
            'high': 0.8     # 高承諾度時降低美容需求的影響
        }

        base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments
        factors['grooming_needs'] = min(1.0, base_grooming *
                                      commitment_multipliers.get(user_prefs.grooming_commitment, 1.0))

        # 5. 社交需求評估
        social_traits = {
            'friendly': 0.25,
            'social': 0.25,
            'affectionate': 0.20,
            'people-oriented': 0.20
        }

        antisocial_traits = {
            'independent': -0.20,
            'aloof': -0.20,
            'reserved': -0.15
        }

        social_score = sum(value for trait, value in social_traits.items()
                          if trait in temperament)
        antisocial_score = sum(value for trait, value in antisocial_traits.items()
                              if trait in temperament)

        # 家庭情況調整
        if user_prefs.has_children:
            child_friendly_bonus = 0.2 if 'good with children' in temperament else 0
            social_score += child_friendly_bonus

        factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))

        # 6. 氣候適應性評估 - 更細緻的環境適應評估
        climate_traits = {
            'cold': {
                'positive': ['thick coat', 'winter', 'cold climate'],
                'negative': ['short coat', 'heat sensitive']
            },
            'hot': {
                'positive': ['short coat', 'heat tolerant', 'warm climate'],
                'negative': ['thick coat', 'cold climate']
            },
            'moderate': {
                'positive': ['adaptable', 'all climate'],
                'negative': []
            }
        }

        climate_score = 0.4  # 基礎分數
        if user_prefs.climate in climate_traits:
            # 正面特質加分
            climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive']
                               if term in description)
            # 負面特質減分
            climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative']
                               if term in description)

        factors['weather_adaptability'] = min(1.0, max(0.0, climate_score))

        # 7. 運動類型匹配評估
        exercise_type_traits = {
            'light_walks': ['calm', 'gentle'],
            'moderate_activity': ['adaptable', 'balanced'],
            'active_training': ['athletic', 'energetic']
        }

        if user_prefs.exercise_type in exercise_type_traits:
            match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type]
                             if trait in temperament)
            factors['exercise_match'] = min(1.0, match_score + 0.5)  # 基礎分0.5

        # 8. 生活方式適配評估
        lifestyle_score = 0.5  # 基礎分數

        # 空間適配
        if user_prefs.living_space == 'apartment':
            if size == 'Small':
                lifestyle_score += 0.2
            elif size == 'Large':
                lifestyle_score -= 0.2
        elif user_prefs.living_space == 'house_large':
            if size in ['Large', 'Giant']:
                lifestyle_score += 0.2

        # 時間可用性適配
        time_availability_bonus = {
            'limited': -0.1,
            'moderate': 0,
            'flexible': 0.1
        }
        lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0)

        factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score))

        return factors

    def amplify_score_extreme(self, score: float) -> float:
        """
        優化分數分布,提供更有意義的評分範圍。
        純粹進行數學轉換,不依賴外部資訊。

        Parameters:
            score: 原始評分(0-1之間的浮點數)

        Returns:
            float: 調整後的評分(0-1之間的浮點數)
        """
        def smooth_curve(x: float, steepness: float = 12) -> float:
            """創建平滑的S型曲線用於分數轉換"""
            return 1 / (1 + math.exp(-steepness * (x - 0.5)))

        # 90-100分的轉換(極佳匹配)
        if score >= 0.90:
            position = (score - 0.90) / 0.10
            return 0.96 + (position * 0.04)

        # 80-90分的轉換(優秀匹配)
        elif score >= 0.80:
            position = (score - 0.80) / 0.10
            return 0.90 + (position * 0.06)

        # 70-80分的轉換(良好匹配)
        elif score >= 0.70:
            position = (score - 0.70) / 0.10
            return 0.82 + (position * 0.08)

        # 50-70分的轉換(可接受匹配)
        elif score >= 0.50:
            position = (score - 0.50) / 0.20
            return 0.75 + (smooth_curve(position) * 0.07)

        # 50分以下的轉換(較差匹配)
        else:
            position = score / 0.50
            return 0.70 + (smooth_curve(position) * 0.05)

    def apply_special_case_adjustments(self, score: float, user_prefs: UserPreferences, breed_info: dict) -> float:
        """
        處理特殊情況和極端案例的評分調整。這個函數特別關注:
        1. 條件組合的協同效應
        2. 品種特性的獨特需求
        3. 極端情況的合理處理

        這個函數就像是一個細心的裁判,會考慮到各種特殊情況,
        並根據具體場景做出合理的評分調整。

        Parameters:
            score: 初始評分
            user_prefs: 使用者偏好
            breed_info: 品種資訊
        Returns:
            float: 調整後的評分(0.2-1.0之間)
        """
        severity_multiplier = 1.0

        def evaluate_spatial_exercise_combination() -> float:
            """
            評估空間與運動需求的組合效應。

            這個函數不再過分懲罰大型犬,而是更多地考慮品種的實際特性。
            就像評估一個運動員是否適合在特定場地訓練一樣,我們需要考慮
            場地大小和運動需求的整體匹配度。
            """
            multiplier = 1.0

            if user_prefs.living_space == 'apartment':
                temperament = breed_info.get('Temperament', '').lower()
                description = breed_info.get('Description', '').lower()

                # 檢查品種是否有利於公寓生活的特徵
                apartment_friendly = any(trait in temperament or trait in description
                                      for trait in ['calm', 'adaptable', 'quiet'])

                # 大型犬的特殊處理
                if breed_info['Size'] in ['Large', 'Giant']:
                    if apartment_friendly:
                        multiplier *= 0.85  # 從0.7提升到0.85,降低懲罰
                    else:
                        multiplier *= 0.75  # 從0.5提升到0.75

                # 檢查運動需求的匹配度
                exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
                exercise_time = user_prefs.exercise_time

                if exercise_needs in ['HIGH', 'VERY HIGH']:
                    if exercise_time >= 120:  # 高運動量可以部分補償空間限制
                        multiplier *= 1.1

            return multiplier

        def evaluate_experience_combination() -> float:
            """
            評估經驗需求的複合影響。

            這個函數就像是評估一個工作崗位與應聘者經驗的匹配度,
            需要綜合考慮工作難度和應聘者能力。
            """
            multiplier = 1.0
            temperament = breed_info.get('Temperament', '').lower()
            care_level = breed_info.get('Care Level', 'MODERATE')

            # 新手飼主的特殊考慮,更寬容的評估標準
            if user_prefs.experience_level == 'beginner':
                if care_level == 'HIGH':
                    if user_prefs.has_children:
                        multiplier *= 0.7  # 從0.5提升到0.7
                    else:
                        multiplier *= 0.8  # 從0.6提升到0.8

                # 性格特徵影響,降低懲罰程度
                challenging_traits = {
                    'stubborn': -0.10,      # 從-0.15降低
                    'independent': -0.08,    # 從-0.12降低
                    'dominant': -0.08,       # 從-0.12降低
                    'protective': -0.06,     # 從-0.10降低
                    'aggressive': -0.15      # 保持較高懲罰因安全考慮
                }

                for trait, penalty in challenging_traits.items():
                    if trait in temperament:
                        multiplier *= (1 + penalty)

            return multiplier

        def evaluate_breed_specific_requirements() -> float:
            """
            評估品種特定需求。

            這個函數就像是為每個品種量身定制評估標準,
            考慮其獨特的特性和需求。
            """
            multiplier = 1.0
            exercise_time = user_prefs.exercise_time
            exercise_type = user_prefs.exercise_type

            # 檢查品種特性
            temperament = breed_info.get('Temperament', '').lower()
            description = breed_info.get('Description', '').lower()
            exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()

            # 運動需求匹配度評估,更合理的標準
            if exercise_needs == 'LOW':
                if exercise_time > 120:
                    multiplier *= 0.85  # 從0.5提升到0.85
            elif exercise_needs == 'VERY HIGH':
                if exercise_time < 60:
                    multiplier *= 0.7   # 從0.5提升到0.7

            # 特殊品種類型的考慮
            if 'sprint' in temperament:
                if exercise_time > 120 and exercise_type != 'active_training':
                    multiplier *= 0.85  # 從0.7提升到0.85

            if any(trait in temperament for trait in ['working', 'herding']):
                if exercise_time < 90 or exercise_type == 'light_walks':
                    multiplier *= 0.8   # 從0.7提升到0.8

            return multiplier

        # 計算各項調整
        space_exercise_mult = evaluate_spatial_exercise_combination()
        experience_mult = evaluate_experience_combination()
        breed_specific_mult = evaluate_breed_specific_requirements()

        # 整合所有調整因素
        severity_multiplier *= space_exercise_mult
        severity_multiplier *= experience_mult
        severity_multiplier *= breed_specific_mult

        # 應用最終調整,確保分數在合理範圍內
        final_score = score * severity_multiplier
        return max(0.2, min(1.0, final_score))