File size: 17,564 Bytes
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import re
import string
from typing import Dict, List, Tuple, Optional, Any
import traceback

class NaturalLanguageProcessor:
    """
    Natural language processing utility class
    Handles text preprocessing and keyword extraction for user input
    """

    def __init__(self):
        """Initialize the natural language processor"""
        self.stop_words = {
            'a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'for', 'from',
            'has', 'he', 'in', 'is', 'it', 'its', 'of', 'on', 'that', 'the',
            'to', 'was', 'will', 'with', 'would', 'i', 'me', 'my', 'we', 'us',
            'our', 'you', 'your', 'they', 'them', 'their'
        }

        # Breed name mappings (common aliases to standard names)
        self.breed_aliases = {
            'lab': 'labrador_retriever',
            'labrador': 'labrador_retriever',
            'golden': 'golden_retriever',
            'retriever': ['labrador_retriever', 'golden_retriever'],
            'german shepherd': 'german_shepherd',
            'shepherd': 'german_shepherd',
            'border collie': 'border_collie',
            'collie': ['border_collie', 'collie'],
            'bulldog': ['french_bulldog', 'english_bulldog'],
            'french bulldog': 'french_bulldog',
            'poodle': ['standard_poodle', 'miniature_poodle', 'toy_poodle'],
            'husky': 'siberian_husky',
            'siberian husky': 'siberian_husky',
            'beagle': 'beagle',
            'yorkshire terrier': 'yorkshire_terrier',
            'yorkie': 'yorkshire_terrier',
            'chihuahua': 'chihuahua',
            'dachshund': 'dachshund',
            'wiener dog': 'dachshund',
            'rottweiler': 'rottweiler',
            'rottie': 'rottweiler',
            'boxer': 'boxer',
            'great dane': 'great_dane',
            'dane': 'great_dane',
            'mastiff': ['bull_mastiff', 'tibetan_mastiff'],
            'pitbull': 'american_staffordshire_terrier',
            'pit bull': 'american_staffordshire_terrier',
            'shih tzu': 'shih-tzu',
            'maltese': 'maltese_dog',
            'pug': 'pug',
            'basset hound': 'basset',
            'bloodhound': 'bloodhound',
            'australian shepherd': 'kelpie',
            'aussie': 'kelpie'
        }

        # Lifestyle keyword mappings
        self.lifestyle_keywords = {
            'living_space': {
                'apartment': ['apartment', 'flat', 'condo', 'small space', 'city living', 'urban'],
                'house': ['house', 'home', 'yard', 'garden', 'suburban', 'large space'],
                'farm': ['farm', 'rural', 'country', 'acreage', 'ranch']
            },
            'activity_level': {
                'very_high': ['very active', 'extremely energetic', 'marathon runner', 'athlete'],
                'high': ['active', 'energetic', 'exercise', 'hiking', 'running', 'outdoor activities',
                        'sports', 'jogging', 'biking', 'adventure'],
                'moderate': ['moderate exercise', 'some activity', 'weekend walks', 'occasional exercise'],
                'low': ['calm', 'lazy', 'indoor', 'low energy', 'couch potato', 'sedentary', 'quiet lifestyle']
            },
            'family_situation': {
                'children': ['children', 'kids', 'toddlers', 'babies', 'family with children', 'young family'],
                'elderly': ['elderly', 'senior', 'old', 'retired', 'senior citizen'],
                'single': ['single', 'alone', 'individual', 'bachelor', 'solo'],
                'couple': ['couple', 'two people', 'pair', 'duo']
            },
            'noise_tolerance': {
                'low': ['quiet', 'silent', 'noise-sensitive', 'peaceful', 'no barking', 'minimal noise'],
                'moderate': ['some noise ok', 'moderate barking', 'normal noise'],
                'high': ['loud ok', 'barking fine', 'noise tolerant', 'doesn\'t mind noise']
            },
            'size_preference': {
                'small': ['small', 'tiny', 'little', 'compact', 'lap dog', 'petite', 'miniature'],
                'medium': ['medium', 'moderate size', 'average', 'mid-size'],
                'large': ['large', 'big', 'huge', 'giant', 'massive', 'substantial'],
                'varies': ['any size', 'size doesn\'t matter', 'flexible on size']
            },
            'experience_level': {
                'beginner': ['first time', 'beginner', 'new to dogs', 'inexperienced', 'never had'],
                'some': ['some experience', 'had dogs before', 'moderate experience'],
                'experienced': ['experienced', 'expert', 'very experienced', 'professional', 'trainer']
            },
            'grooming_commitment': {
                'low': ['low maintenance', 'easy care', 'minimal grooming', 'wash and go'],
                'moderate': ['moderate grooming', 'some brushing', 'regular care'],
                'high': ['high maintenance', 'lots of grooming', 'professional grooming', 'daily brushing']
            },
            'special_needs': {
                'guard': ['guard dog', 'protection', 'security', 'watchdog', 'guardian'],
                'therapy': ['therapy dog', 'emotional support', 'comfort', 'calm companion'],
                'hypoallergenic': ['hypoallergenic', 'allergies', 'non-shedding', 'allergy friendly'],
                'working': ['working dog', 'job', 'task', 'service dog'],
                'companion': ['companion', 'friend', 'buddy', 'lap dog', 'cuddle']
            }
        }

        # Comparative preference keywords
        self.preference_indicators = {
            'love': 1.0,
            'prefer': 0.9,
            'like': 0.8,
            'want': 0.8,
            'interested in': 0.7,
            'considering': 0.6,
            'ok with': 0.5,
            'don\'t mind': 0.4,
            'not interested': 0.2,
            'dislike': 0.1,
            'hate': 0.0
        }

        # Order keywords
        self.order_keywords = {
            'first': 1.0, 'most': 1.0, 'primary': 1.0, 'main': 1.0,
            'second': 0.8, 'then': 0.8, 'next': 0.8,
            'third': 0.6, 'also': 0.6, 'additionally': 0.6,
            'last': 0.4, 'least': 0.4, 'finally': 0.4
        }

    def preprocess_text(self, text: str) -> str:
        """
        Text preprocessing

        Args:
            text: Raw text

        Returns:
            Preprocessed text
        """
        if not text:
            return ""

        # Convert to lowercase
        text = text.lower().strip()

        # Remove punctuation (keep some meaningful ones)
        text = re.sub(r'[^\w\s\-\']', ' ', text)

        # Handle extra whitespace
        text = re.sub(r'\s+', ' ', text)

        return text

    def extract_breed_mentions(self, text: str) -> List[Tuple[str, float]]:
        """
        Extract mentioned breeds and their preference levels from text

        Args:
            text: Input text

        Returns:
            List of (breed_name, preference_score) tuples
        """
        text = self.preprocess_text(text)
        breed_mentions = []

        try:
            # Check each breed alias
            for alias, standard_breed in self.breed_aliases.items():
                if alias in text:
                    # Find surrounding preference indicators
                    preference_score = self._find_preference_score(text, alias)

                    if isinstance(standard_breed, list):
                        # If alias maps to multiple breeds, add all
                        for breed in standard_breed:
                            breed_mentions.append((breed, preference_score))
                    else:
                        breed_mentions.append((standard_breed, preference_score))

            # Deduplicate and merge scores
            breed_scores = {}
            for breed, score in breed_mentions:
                if breed in breed_scores:
                    breed_scores[breed] = max(breed_scores[breed], score)
                else:
                    breed_scores[breed] = score

            return list(breed_scores.items())

        except Exception as e:
            print(f"Error extracting breed mentions: {str(e)}")
            return []

    def _find_preference_score(self, text: str, breed_mention: str) -> float:
        """
        Find preference score near breed mention

        Args:
            text: Text
            breed_mention: Breed mention

        Returns:
            Preference score (0.0-1.0)
        """
        try:
            # Find breed mention position
            mention_pos = text.find(breed_mention)
            if mention_pos == -1:
                return 0.5  # Default neutral score

            # Check context (50 characters before and after)
            context_start = max(0, mention_pos - 50)
            context_end = min(len(text), mention_pos + len(breed_mention) + 50)
            context = text[context_start:context_end]

            # Find preference indicators
            max_score = 0.5  # Default score

            for indicator, score in self.preference_indicators.items():
                if indicator in context:
                    max_score = max(max_score, score)

            # Find order keywords
            for order_word, multiplier in self.order_keywords.items():
                if order_word in context:
                    max_score = max(max_score, max_score * multiplier)

            return max_score

        except Exception as e:
            print(f"Error finding preference score: {str(e)}")
            return 0.5

    def extract_lifestyle_preferences(self, text: str) -> Dict[str, Dict[str, float]]:
        """
        Extract lifestyle preferences from text

        Args:
            text: Input text

        Returns:
            Lifestyle preferences dictionary
        """
        text = self.preprocess_text(text)
        preferences = {}

        try:
            for category, keywords_dict in self.lifestyle_keywords.items():
                preferences[category] = {}

                for preference_type, keywords in keywords_dict.items():
                    score = 0.0
                    count = 0

                    for keyword in keywords:
                        if keyword in text:
                            # Calculate keyword occurrence intensity
                            keyword_count = text.count(keyword)
                            score += keyword_count
                            count += keyword_count

                    if count > 0:
                        # Normalize score
                        preferences[category][preference_type] = min(score / max(count, 1), 1.0)

            return preferences

        except Exception as e:
            print(f"Error extracting lifestyle preferences: {str(e)}")
            return {}

    def generate_search_keywords(self, text: str) -> List[str]:
        """
        Generate keyword list for search

        Args:
            text: Input text

        Returns:
            List of keywords
        """
        text = self.preprocess_text(text)
        keywords = []

        try:
            # Tokenize and filter stop words
            words = text.split()
            for word in words:
                if len(word) > 2 and word not in self.stop_words:
                    keywords.append(word)

            # Extract important phrases
            phrases = self._extract_phrases(text)
            keywords.extend(phrases)

            # Remove duplicates
            keywords = list(set(keywords))

            return keywords

        except Exception as e:
            print(f"Error generating search keywords: {str(e)}")
            return []

    def _extract_phrases(self, text: str) -> List[str]:
        """
        Extract important phrases

        Args:
            text: Input text

        Returns:
            List of phrases
        """
        phrases = []

        # Define important phrase patterns
        phrase_patterns = [
            r'good with \w+',
            r'apartment \w+',
            r'family \w+',
            r'exercise \w+',
            r'grooming \w+',
            r'noise \w+',
            r'training \w+',
            r'health \w+',
            r'\w+ friendly',
            r'\w+ tolerant',
            r'\w+ maintenance',
            r'\w+ energy',
            r'\w+ barking',
            r'\w+ shedding'
        ]

        for pattern in phrase_patterns:
            matches = re.findall(pattern, text)
            phrases.extend(matches)

        return phrases

    def analyze_sentiment(self, text: str) -> Dict[str, float]:
        """
        Analyze text sentiment

        Args:
            text: Input text

        Returns:
            Sentiment analysis results {'positive': 0.0-1.0, 'negative': 0.0-1.0, 'neutral': 0.0-1.0}
        """
        text = self.preprocess_text(text)

        positive_words = [
            'love', 'like', 'want', 'prefer', 'good', 'great', 'excellent',
            'perfect', 'ideal', 'wonderful', 'amazing', 'fantastic'
        ]

        negative_words = [
            'hate', 'dislike', 'bad', 'terrible', 'awful', 'horrible',
            'not good', 'don\'t want', 'avoid', 'against', 'problem'
        ]

        positive_count = sum(1 for word in positive_words if word in text)
        negative_count = sum(1 for word in negative_words if word in text)
        total_words = len(text.split())

        if total_words == 0:
            return {'positive': 0.0, 'negative': 0.0, 'neutral': 1.0}

        positive_ratio = positive_count / total_words
        negative_ratio = negative_count / total_words
        neutral_ratio = 1.0 - positive_ratio - negative_ratio

        return {
            'positive': positive_ratio,
            'negative': negative_ratio,
            'neutral': max(0.0, neutral_ratio)
        }

    def extract_implicit_preferences(self, text: str) -> Dict[str, Any]:
        """
        Extract implicit preferences from text

        Args:
            text: Input text

        Returns:
            Dictionary of implicit preferences
        """
        text = self.preprocess_text(text)
        implicit_prefs = {}

        try:
            # Infer preferences from mentioned activities
            if any(activity in text for activity in ['hiking', 'running', 'jogging', 'outdoor']):
                implicit_prefs['exercise_needs'] = 'high'
                implicit_prefs['size_preference'] = 'medium_to_large'

            # Infer from living environment
            if any(env in text for env in ['apartment', 'small space', 'city']):
                implicit_prefs['size_preference'] = 'small_to_medium'
                implicit_prefs['noise_tolerance'] = 'low'
                implicit_prefs['exercise_needs'] = 'moderate'

            # Infer from family situation
            if 'children' in text or 'kids' in text:
                implicit_prefs['temperament'] = 'gentle_patient'
                implicit_prefs['good_with_children'] = True

            # Infer from experience level
            if any(exp in text for exp in ['first time', 'beginner', 'new to']):
                implicit_prefs['care_level'] = 'low_to_moderate'
                implicit_prefs['training_difficulty'] = 'easy'

            # Infer from time commitment
            if any(time in text for time in ['busy', 'no time', 'low maintenance']):
                implicit_prefs['grooming_needs'] = 'low'
                implicit_prefs['care_level'] = 'low'
                implicit_prefs['exercise_needs'] = 'low_to_moderate'

            return implicit_prefs

        except Exception as e:
            print(f"Error extracting implicit preferences: {str(e)}")
            return {}

    def validate_input(self, text: str) -> Dict[str, Any]:
        """
        Validate input text validity

        Args:
            text: Input text

        Returns:
            Validation results dictionary
        """
        if not text or not text.strip():
            return {
                'is_valid': False,
                'error': 'Empty input',
                'suggestions': ['Please provide a description of your preferences']
            }

        text = text.strip()

        # Check length
        if len(text) < 10:
            return {
                'is_valid': False,
                'error': 'Input too short',
                'suggestions': ['Please provide more details about your preferences']
            }

        if len(text) > 1000:
            return {
                'is_valid': False,
                'error': 'Input too long',
                'suggestions': ['Please provide a more concise description']
            }

        # Check for meaningful content
        processed_text = self.preprocess_text(text)
        meaningful_words = [word for word in processed_text.split()
                          if len(word) > 2 and word not in self.stop_words]

        if len(meaningful_words) < 3:
            return {
                'is_valid': False,
                'error': 'Not enough meaningful content',
                'suggestions': ['Please provide more specific details about your lifestyle and preferences']
            }

        return {
            'is_valid': True,
            'word_count': len(meaningful_words),
            'suggestions': []
        }

def get_nlp_processor():
    """Get natural language processor instance"""
    try:
        return NaturalLanguageProcessor()
    except Exception as e:
        print(f"Error creating NLP processor: {str(e)}")
        return None