Spaces:
Running
on
Zero
Running
on
Zero
File size: 107,840 Bytes
1e4c9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 |
import random
import hashlib
import numpy as np
import sqlite3
import re
import traceback
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sentence_transformers import SentenceTransformer
import torch
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score, UnifiedScoringSystem, calculate_unified_breed_scores
from query_understanding import QueryUnderstandingEngine, analyze_user_query
from constraint_manager import ConstraintManager, apply_breed_constraints
from multi_head_scorer import MultiHeadScorer, score_breed_candidates, BreedScore
from score_calibrator import ScoreCalibrator, calibrate_breed_scores
from config_manager import get_config_manager, get_standardized_breed_data
@dataclass
class BreedDescriptionVector:
"""Data structure for breed description vectorization"""
breed_name: str
description_text: str
embedding: np.ndarray
characteristics: Dict[str, Any]
class SemanticBreedRecommender:
"""
Enhanced SBERT-based semantic breed recommendation system
Provides multi-dimensional natural language understanding for dog breed recommendations
"""
def __init__(self):
"""Initialize the semantic recommender"""
self.model_name = 'all-MiniLM-L6-v2' # Efficient SBERT model
self.sbert_model = None
self.breed_vectors = {}
self.breed_list = self._get_breed_list()
self.comparative_keywords = {
'most': 1.0, 'love': 1.0, 'prefer': 0.9, 'like': 0.8,
'then': 0.7, 'second': 0.7, 'followed': 0.6,
'third': 0.5, 'least': 0.3, 'dislike': 0.2
}
# self.query_engine = QueryUnderstandingEngine()
# self.constraint_manager = ConstraintManager()
# self.multi_head_scorer = None # Will be initialized with SBERT model
# self.score_calibrator = ScoreCalibrator()
# self.config_manager = get_config_manager()
self._initialize_model()
self._build_breed_vectors()
# Initialize multi-head scorer with SBERT model if enhanced mode is enabled
# if self.sbert_model:
# self.multi_head_scorer = MultiHeadScorer(self.sbert_model)
# print("Multi-head scorer initialized with SBERT model")
def _get_breed_list(self) -> List[str]:
"""Get breed list from database"""
try:
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog")
breeds = [row[0] for row in cursor.fetchall()]
cursor.close()
conn.close()
return breeds
except Exception as e:
print(f"Error getting breed list: {str(e)}")
# Backup breed list for Google Colab environment
return ['Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever',
'Bulldog', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier']
def _initialize_model(self):
"""Initialize SBERT model with fallback"""
try:
print("Loading SBERT model...")
# Try different model names if the primary one fails
model_options = ['all-MiniLM-L6-v2', 'all-mpnet-base-v2', 'all-MiniLM-L12-v2']
for model_name in model_options:
try:
self.sbert_model = SentenceTransformer(model_name)
self.model_name = model_name
print(f"SBERT model {model_name} loaded successfully")
return
except Exception as model_e:
print(f"Failed to load {model_name}: {str(model_e)}")
continue
# If all models fail
print("All SBERT models failed to load. Using basic text matching fallback.")
self.sbert_model = None
except Exception as e:
print(f"Failed to initialize any SBERT model: {str(e)}")
print(traceback.format_exc())
print("Will provide basic text-based recommendations without embeddings")
self.sbert_model = None
def _create_breed_description(self, breed: str) -> str:
"""Create comprehensive natural language description for breed with all key characteristics"""
try:
# Get all information sources
breed_info = get_dog_description(breed) or {}
health_info = breed_health_info.get(breed, {}) if breed_health_info else {}
noise_info = breed_noise_info.get(breed, {}) if breed_noise_info else {}
breed_display_name = breed.replace('_', ' ')
description_parts = []
# 1. Basic size and physical characteristics
size = breed_info.get('Size', 'medium').lower()
description_parts.append(f"{breed_display_name} is a {size} sized dog breed")
# 2. Temperament and personality (critical for matching)
temperament = breed_info.get('Temperament', '')
if temperament:
description_parts.append(f"with a {temperament.lower()} temperament")
# 3. Exercise and activity level (critical for apartment living)
exercise_needs = breed_info.get('Exercise Needs', 'moderate').lower()
if 'high' in exercise_needs or 'very high' in exercise_needs:
description_parts.append("requiring high daily exercise and mental stimulation")
elif 'low' in exercise_needs or 'minimal' in exercise_needs:
description_parts.append("with minimal exercise requirements, suitable for apartment living")
else:
description_parts.append("with moderate exercise needs")
# 4. Noise characteristics (critical for quiet requirements)
noise_level = noise_info.get('noise_level', 'moderate').lower()
if 'low' in noise_level or 'quiet' in noise_level:
description_parts.append("known for being quiet and rarely barking")
elif 'high' in noise_level or 'loud' in noise_level:
description_parts.append("tends to be vocal and bark frequently")
else:
description_parts.append("with moderate barking tendencies")
# 5. Living space compatibility
if size in ['small', 'tiny']:
description_parts.append("excellent for small apartments and limited spaces")
elif size in ['large', 'giant']:
description_parts.append("requiring large living spaces and preferably a yard")
else:
description_parts.append("adaptable to various living situations")
# 6. Grooming and maintenance
grooming_needs = breed_info.get('Grooming Needs', 'moderate').lower()
if 'high' in grooming_needs:
description_parts.append("requiring regular professional grooming")
elif 'low' in grooming_needs:
description_parts.append("with minimal grooming requirements")
else:
description_parts.append("with moderate grooming needs")
# 7. Family compatibility
good_with_children = breed_info.get('Good with Children', 'Yes')
if good_with_children == 'Yes':
description_parts.append("excellent with children and families")
else:
description_parts.append("better suited for adult households")
# 8. Intelligence and trainability (from database description)
intelligence_keywords = []
description_text = breed_info.get('Description', '').lower()
if description_text:
# Extract intelligence indicators from description
if any(word in description_text for word in ['intelligent', 'smart', 'clever', 'quick to learn']):
intelligence_keywords.extend(['highly intelligent', 'trainable', 'quick learner'])
elif any(word in description_text for word in ['stubborn', 'independent', 'difficult to train']):
intelligence_keywords.extend(['independent minded', 'requires patience', 'challenging to train'])
else:
intelligence_keywords.extend(['moderate intelligence', 'trainable with consistency'])
# Extract working/purpose traits from description
if any(word in description_text for word in ['working', 'herding', 'guard', 'hunting']):
intelligence_keywords.extend(['working breed', 'purpose-driven', 'task-oriented'])
elif any(word in description_text for word in ['companion', 'lap', 'toy', 'decorative']):
intelligence_keywords.extend(['companion breed', 'affectionate', 'people-focused'])
# Add intelligence context to description
if intelligence_keywords:
description_parts.append(f"characterized as {', '.join(intelligence_keywords[:2])}")
# 9. Special characteristics and purpose (enhanced with database mining)
if breed_info.get('Description'):
desc = breed_info.get('Description', '')[:150] # Increased to 150 chars for more context
if desc:
# Extract key traits from description for better semantic matching
desc_lower = desc.lower()
key_traits = []
# Extract key behavioral traits from description
if 'friendly' in desc_lower:
key_traits.append('friendly')
if 'gentle' in desc_lower:
key_traits.append('gentle')
if 'energetic' in desc_lower or 'active' in desc_lower:
key_traits.append('energetic')
if 'calm' in desc_lower or 'peaceful' in desc_lower:
key_traits.append('calm')
if 'protective' in desc_lower or 'guard' in desc_lower:
key_traits.append('protective')
trait_text = f" and {', '.join(key_traits)}" if key_traits else ""
description_parts.append(f"Known for: {desc.lower()}{trait_text}")
# 9. Care level requirements
try:
care_level = breed_info.get('Care Level', 'moderate')
if isinstance(care_level, str):
description_parts.append(f"requiring {care_level.lower()} overall care level")
else:
description_parts.append("requiring moderate overall care level")
except Exception as e:
print(f"Error processing care level for {breed}: {str(e)}")
description_parts.append("requiring moderate overall care level")
# 10. Lifespan information
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
if lifespan and isinstance(lifespan, str) and lifespan.strip():
description_parts.append(f"with a typical lifespan of {lifespan}")
else:
description_parts.append("with a typical lifespan of 10-12 years")
except Exception as e:
print(f"Error processing lifespan for {breed}: {str(e)}")
description_parts.append("with a typical lifespan of 10-12 years")
# Create comprehensive description
full_description = '. '.join(description_parts) + '.'
# Add comprehensive keywords for better semantic matching
keywords = []
# Basic breed name keywords
keywords.extend([word.lower() for word in breed_display_name.split()])
# Temperament keywords
if temperament:
keywords.extend([word.lower().strip(',') for word in temperament.split()])
# Size-based keywords
if 'small' in size or 'tiny' in size:
keywords.extend(['small', 'tiny', 'compact', 'little', 'apartment', 'indoor', 'lap'])
elif 'large' in size or 'giant' in size:
keywords.extend(['large', 'big', 'giant', 'huge', 'yard', 'space', 'outdoor'])
else:
keywords.extend(['medium', 'moderate', 'average', 'balanced'])
# Activity level keywords
exercise_needs = breed_info.get('Exercise Needs', 'moderate').lower()
if 'high' in exercise_needs:
keywords.extend(['active', 'energetic', 'exercise', 'outdoor', 'hiking', 'running', 'athletic'])
elif 'low' in exercise_needs:
keywords.extend(['calm', 'low-energy', 'indoor', 'relaxed', 'couch', 'sedentary'])
else:
keywords.extend(['moderate', 'balanced', 'walks', 'regular'])
# Noise level keywords
noise_level = noise_info.get('noise_level', 'moderate').lower()
if 'quiet' in noise_level or 'low' in noise_level:
keywords.extend(['quiet', 'silent', 'calm', 'peaceful', 'low-noise'])
elif 'high' in noise_level or 'loud' in noise_level:
keywords.extend(['vocal', 'barking', 'loud', 'alert', 'watchdog'])
# Living situation keywords
if size in ['small', 'tiny'] and 'low' in exercise_needs:
keywords.extend(['apartment', 'city', 'urban', 'small-space'])
if size in ['large', 'giant'] or 'high' in exercise_needs:
keywords.extend(['house', 'yard', 'suburban', 'rural', 'space'])
# Family keywords
good_with_children = breed_info.get('Good with Children', 'Yes')
if good_with_children == 'Yes':
keywords.extend(['family', 'children', 'kids', 'friendly', 'gentle'])
# Intelligence and trainability keywords (from database description mining)
if intelligence_keywords:
keywords.extend([word.lower() for phrase in intelligence_keywords for word in phrase.split()])
# Grooming-based keywords (enhanced)
grooming_needs = breed_info.get('Grooming Needs', 'moderate').lower()
if 'high' in grooming_needs:
keywords.extend(['high-maintenance', 'professional-grooming', 'daily-brushing', 'coat-care'])
elif 'low' in grooming_needs:
keywords.extend(['low-maintenance', 'minimal-grooming', 'easy-care', 'wash-and-go'])
else:
keywords.extend(['moderate-grooming', 'weekly-brushing', 'regular-care'])
# Lifespan-based keywords
lifespan = breed_info.get('Lifespan', '10-12 years')
if lifespan and isinstance(lifespan, str):
try:
# Extract years from lifespan string (e.g., "10-12 years" or "12-15 years")
import re
years = re.findall(r'\d+', lifespan)
if years:
avg_years = sum(int(y) for y in years) / len(years)
if avg_years >= 14:
keywords.extend(['long-lived', 'longevity', 'durable', 'healthy-lifespan'])
elif avg_years <= 8:
keywords.extend(['shorter-lifespan', 'health-considerations', 'special-care'])
else:
keywords.extend(['average-lifespan', 'moderate-longevity'])
except:
keywords.extend(['average-lifespan'])
# Add keywords to description for better semantic matching
unique_keywords = list(set(keywords))
keyword_text = ' '.join(unique_keywords)
full_description += f" Additional context: {keyword_text}"
return full_description
except Exception as e:
print(f"Error creating description for {breed}: {str(e)}")
return f"{breed.replace('_', ' ')} is a dog breed with unique characteristics."
def _build_breed_vectors(self):
"""Build vector representations for all breeds"""
try:
print("Building breed vector database...")
# Skip if model is not available
if self.sbert_model is None:
print("SBERT model not available, skipping vector building")
return
for breed in self.breed_list:
description = self._create_breed_description(breed)
# Generate embedding vector
embedding = self.sbert_model.encode(description, convert_to_tensor=False)
# Get breed characteristics
breed_info = get_dog_description(breed)
characteristics = {
'size': breed_info.get('Size', 'Medium') if breed_info else 'Medium',
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate',
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate',
'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes',
'temperament': breed_info.get('Temperament', '') if breed_info else ''
}
self.breed_vectors[breed] = BreedDescriptionVector(
breed_name=breed,
description_text=description,
embedding=embedding,
characteristics=characteristics
)
print(f"Successfully built {len(self.breed_vectors)} breed vectors")
except Exception as e:
print(f"Error building breed vectors: {str(e)}")
print(traceback.format_exc())
raise
def _parse_comparative_preferences(self, user_input: str) -> Dict[str, float]:
"""Parse comparative preference expressions"""
breed_scores = {}
# Normalize input
text = user_input.lower()
# Find breed names and preference keywords
for breed in self.breed_list:
breed_display = breed.replace('_', ' ').lower()
breed_words = breed_display.split()
# Check if this breed is mentioned
breed_mentioned = False
for word in breed_words:
if word in text:
breed_mentioned = True
break
if breed_mentioned:
# Find nearby preference keywords
breed_score = 0.5 # Default score
# Look for keywords within 50 characters of breed name
breed_pos = text.find(breed_words[0])
if breed_pos != -1:
# Check for keywords in context
context_start = max(0, breed_pos - 50)
context_end = min(len(text), breed_pos + 50)
context = text[context_start:context_end]
for keyword, score in self.comparative_keywords.items():
if keyword in context:
breed_score = max(breed_score, score)
breed_scores[breed] = breed_score
return breed_scores
def _extract_lifestyle_keywords(self, user_input: str) -> Dict[str, List[str]]:
"""Enhanced lifestyle keyword extraction with better pattern matching"""
keywords = {
'living_space': [],
'activity_level': [],
'family_situation': [],
'noise_preference': [],
'size_preference': [],
'care_level': [],
'special_needs': [],
'intelligence_preference': [],
'grooming_preference': [],
'lifespan_preference': [],
'temperament_preference': [],
'experience_level': []
}
text = user_input.lower()
# Enhanced living space detection
apartment_terms = ['apartment', 'flat', 'condo', 'small space', 'city living', 'urban', 'no yard', 'indoor']
house_terms = ['house', 'yard', 'garden', 'backyard', 'large space', 'suburban', 'rural', 'farm']
if any(term in text for term in apartment_terms):
keywords['living_space'].append('apartment')
if any(term in text for term in house_terms):
keywords['living_space'].append('house')
# Enhanced activity level detection
high_activity = ['active', 'energetic', 'exercise', 'hiking', 'running', 'outdoor', 'sports', 'jogging',
'athletic', 'adventure', 'vigorous', 'high energy', 'workout']
low_activity = ['calm', 'lazy', 'indoor', 'low energy', 'couch', 'sedentary', 'relaxed',
'peaceful', 'quiet lifestyle', 'minimal exercise']
moderate_activity = ['moderate', 'walk', 'daily walks', 'light exercise']
if any(term in text for term in high_activity):
keywords['activity_level'].append('high')
if any(term in text for term in low_activity):
keywords['activity_level'].append('low')
if any(term in text for term in moderate_activity):
keywords['activity_level'].append('moderate')
# Enhanced family situation detection
children_terms = ['children', 'kids', 'family', 'child', 'toddler', 'baby', 'teenage', 'school age']
elderly_terms = ['elderly', 'senior', 'old', 'retirement', 'aged', 'mature']
single_terms = ['single', 'alone', 'individual', 'solo', 'myself']
if any(term in text for term in children_terms):
keywords['family_situation'].append('children')
if any(term in text for term in elderly_terms):
keywords['family_situation'].append('elderly')
if any(term in text for term in single_terms):
keywords['family_situation'].append('single')
# Enhanced noise preference detection
quiet_terms = ['quiet', 'silent', 'noise-sensitive', 'peaceful', 'no barking', 'minimal noise',
'soft-spoken', 'calm', 'tranquil']
noise_ok_terms = ['loud', 'barking ok', 'noise tolerant', 'vocal', 'doesn\'t matter']
if any(term in text for term in quiet_terms):
keywords['noise_preference'].append('low')
if any(term in text for term in noise_ok_terms):
keywords['noise_preference'].append('high')
# Enhanced size preference detection
small_terms = ['small', 'tiny', 'little', 'compact', 'miniature', 'toy', 'lap dog']
large_terms = ['large', 'big', 'giant', 'huge', 'massive', 'great']
medium_terms = ['medium', 'moderate size', 'average', 'mid-sized']
if any(term in text for term in small_terms):
keywords['size_preference'].append('small')
if any(term in text for term in large_terms):
keywords['size_preference'].append('large')
if any(term in text for term in medium_terms):
keywords['size_preference'].append('medium')
# Enhanced care level detection
low_care = ['low maintenance', 'easy care', 'simple', 'minimal grooming', 'wash and go']
high_care = ['high maintenance', 'grooming', 'care intensive', 'professional grooming', 'daily brushing']
if any(term in text for term in low_care):
keywords['care_level'].append('low')
if any(term in text for term in high_care):
keywords['care_level'].append('high')
# Intelligence preference detection (NEW)
smart_terms = ['smart', 'intelligent', 'clever', 'bright', 'quick learner', 'easy to train', 'trainable', 'genius', 'brilliant']
independent_terms = ['independent', 'stubborn', 'strong-willed', 'less trainable', 'thinks for themselves']
if any(term in text for term in smart_terms):
keywords['intelligence_preference'].append('high')
if any(term in text for term in independent_terms):
keywords['intelligence_preference'].append('independent')
# Grooming preference detection (NEW)
low_grooming_terms = ['low grooming', 'minimal grooming', 'easy care', 'wash and wear', 'no grooming', 'simple coat']
high_grooming_terms = ['high grooming', 'professional grooming', 'lots of care', 'high maintenance coat', 'daily brushing', 'regular grooming']
if any(term in text for term in low_grooming_terms):
keywords['grooming_preference'].append('low')
if any(term in text for term in high_grooming_terms):
keywords['grooming_preference'].append('high')
# Lifespan preference detection (NEW)
long_lived_terms = ['long lived', 'long lifespan', 'live long', 'many years', '15+ years', 'longevity']
healthy_terms = ['healthy breed', 'few health issues', 'robust', 'hardy', 'strong constitution']
if any(term in text for term in long_lived_terms):
keywords['lifespan_preference'].append('long')
if any(term in text for term in healthy_terms):
keywords['lifespan_preference'].append('healthy')
# Temperament preference detection (NEW)
gentle_terms = ['gentle', 'calm', 'peaceful', 'laid back', 'chill', 'mellow', 'docile']
playful_terms = ['playful', 'energetic', 'fun', 'active personality', 'lively', 'spirited', 'bouncy']
protective_terms = ['protective', 'guard', 'watchdog', 'alert', 'vigilant', 'defensive']
friendly_terms = ['friendly', 'social', 'outgoing', 'loves people', 'sociable', 'gregarious']
if any(term in text for term in gentle_terms):
keywords['temperament_preference'].append('gentle')
if any(term in text for term in playful_terms):
keywords['temperament_preference'].append('playful')
if any(term in text for term in protective_terms):
keywords['temperament_preference'].append('protective')
if any(term in text for term in friendly_terms):
keywords['temperament_preference'].append('friendly')
# Experience level detection (NEW)
beginner_terms = ['first time', 'beginner', 'new to dogs', 'never had', 'novice', 'inexperienced']
advanced_terms = ['experienced', 'advanced', 'dog expert', 'many dogs before', 'professional', 'seasoned']
if any(term in text for term in beginner_terms):
keywords['experience_level'].append('beginner')
if any(term in text for term in advanced_terms):
keywords['experience_level'].append('advanced')
# Enhanced special needs detection
guard_terms = ['guard', 'protection', 'security', 'watchdog', 'protective', 'defender']
companion_terms = ['therapy', 'emotional support', 'companion', 'comfort', 'lap dog', 'cuddly']
hypoallergenic_terms = ['hypoallergenic', 'allergies', 'non-shedding', 'allergy-friendly', 'no shed']
multi_pet_terms = ['good with cats', 'cat friendly', 'multi-pet', 'other animals']
if any(term in text for term in guard_terms):
keywords['special_needs'].append('guard')
if any(term in text for term in companion_terms):
keywords['special_needs'].append('companion')
if any(term in text for term in hypoallergenic_terms):
keywords['special_needs'].append('hypoallergenic')
if any(term in text for term in multi_pet_terms):
keywords['special_needs'].append('multi_pet')
return keywords
def _apply_size_distribution_correction(self, recommendations: List[Dict]) -> List[Dict]:
"""Apply size distribution correction to prevent large breed bias"""
if len(recommendations) < 10:
return recommendations
# Analyze size distribution
size_counts = {'toy': 0, 'small': 0, 'medium': 0, 'large': 0, 'giant': 0}
for rec in recommendations:
breed_info = get_dog_description(rec['breed'])
if breed_info:
size = self._normalize_breed_size(breed_info.get('Size', 'Medium'))
size_counts[size] += 1
total_recs = len(recommendations)
large_giant_ratio = (size_counts['large'] + size_counts['giant']) / total_recs
# If more than 70% are large/giant breeds, apply correction
if large_giant_ratio > 0.7:
corrected_recommendations = []
size_quotas = {'toy': 2, 'small': 4, 'medium': 6, 'large': 2, 'giant': 1}
current_counts = {'toy': 0, 'small': 0, 'medium': 0, 'large': 0, 'giant': 0}
# First pass: add breeds within quotas
for rec in recommendations:
breed_info = get_dog_description(rec['breed'])
if breed_info:
size = self._normalize_breed_size(breed_info.get('Size', 'Medium'))
if current_counts[size] < size_quotas[size]:
corrected_recommendations.append(rec)
current_counts[size] += 1
# Second pass: fill remaining slots with best remaining candidates
remaining_slots = 15 - len(corrected_recommendations)
remaining_breeds = [rec for rec in recommendations if rec not in corrected_recommendations]
corrected_recommendations.extend(remaining_breeds[:remaining_slots])
return corrected_recommendations
return recommendations
def _normalize_breed_size(self, size: str) -> str:
"""Normalize breed size to standard categories"""
if not isinstance(size, str):
return 'medium'
size_lower = size.lower()
if any(term in size_lower for term in ['toy', 'tiny']):
return 'toy'
elif 'small' in size_lower:
return 'small'
elif 'medium' in size_lower:
return 'medium'
elif 'large' in size_lower:
return 'large'
elif any(term in size_lower for term in ['giant', 'extra large']):
return 'giant'
else:
return 'medium'
def _parse_user_requirements(self, user_input: str) -> Dict[str, Any]:
"""Parse user requirements more accurately"""
requirements = {
'living_space': None,
'exercise_level': None,
'preferred_size': None,
'noise_tolerance': None
}
input_lower = user_input.lower()
# Living space detection
if 'apartment' in input_lower or 'small' in input_lower:
requirements['living_space'] = 'apartment'
elif 'large house' in input_lower or 'big' in input_lower:
requirements['living_space'] = 'large_house'
elif 'medium' in input_lower:
requirements['living_space'] = 'medium_house'
# Exercise level detection
if "don't exercise" in input_lower or 'low exercise' in input_lower:
requirements['exercise_level'] = 'low'
elif any(term in input_lower for term in ['hiking', 'running', 'active']):
requirements['exercise_level'] = 'high'
elif '30 minutes' in input_lower or 'moderate' in input_lower:
requirements['exercise_level'] = 'moderate'
# Size preference detection
if any(term in input_lower for term in ['small dog', 'tiny', 'toy']):
requirements['preferred_size'] = 'small'
elif any(term in input_lower for term in ['large dog', 'big dog']):
requirements['preferred_size'] = 'large'
elif 'medium' in input_lower:
requirements['preferred_size'] = 'medium'
return requirements
def _apply_hard_constraints(self, breed: str, user_input: str, breed_characteristics: Dict[str, Any]) -> float:
"""Enhanced hard constraints with stricter penalties"""
penalty = 0.0
user_text_lower = user_input.lower()
# Get breed information
breed_info = get_dog_description(breed)
if not breed_info:
return 0.0
breed_size = breed_info.get('Size', '').lower()
exercise_needs = breed_info.get('Exercise Needs', '').lower()
# Apartment living constraints - MUCH STRICTER
if any(term in user_text_lower for term in ['apartment', 'flat', 'studio', 'small space']):
if 'giant' in breed_size:
return -2.0 # Complete elimination
elif 'large' in breed_size:
if any(term in exercise_needs for term in ['high', 'very high']):
return -2.0 # Complete elimination
else:
penalty -= 0.5 # Still significant penalty
elif 'medium' in breed_size and 'very high' in exercise_needs:
penalty -= 0.6
# Exercise mismatch constraints
if "don't exercise much" in user_text_lower or "low exercise" in user_text_lower:
if any(term in exercise_needs for term in ['very high', 'extreme', 'intense']):
return -2.0 # Complete elimination
elif 'high' in exercise_needs:
penalty -= 0.8
# Moderate lifestyle detection
if any(term in user_text_lower for term in ['moderate', 'balanced', '30 minutes', 'half hour']):
# Penalize extremes
if 'giant' in breed_size:
penalty -= 0.7 # Strong penalty for giants
elif 'very high' in exercise_needs:
penalty -= 0.5
# Children safety (existing logic remains but enhanced)
if any(term in user_text_lower for term in ['child', 'kids', 'family', 'baby']):
good_with_children = breed_info.get('Good with Children', '').lower()
if good_with_children == 'no':
return -2.0 # Complete elimination for safety
return penalty
def get_enhanced_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
Enhanced multi-dimensional semantic breed recommendation
Args:
user_input: User's natural language description
top_k: Number of recommendations to return
Returns:
List of recommended breeds with enhanced scoring
"""
try:
# Stage 1: Query Understanding
dimensions = self.query_engine.analyze_query(user_input)
print(f"Query dimensions detected: {len(dimensions.spatial_constraints + dimensions.activity_level + dimensions.noise_preferences + dimensions.size_preferences + dimensions.family_context + dimensions.maintenance_level + dimensions.special_requirements)} total dimensions")
# Stage 2: Apply Constraints
filter_result = self.constraint_manager.apply_constraints(dimensions, min_candidates=max(8, top_k))
print(f"Constraint filtering: {len(self.breed_list)} -> {len(filter_result.passed_breeds)} candidates")
if not filter_result.passed_breeds:
error_msg = f"No dog breeds match your requirements after applying constraints. Applied constraints: {filter_result.applied_constraints}. Consider relaxing some requirements."
print(f"ERROR: {error_msg}")
raise ValueError(error_msg)
# Stage 3: Multi-head Scoring
if self.multi_head_scorer:
breed_scores = self.multi_head_scorer.score_breeds(filter_result.passed_breeds, dimensions)
print(f"Multi-head scoring completed for {len(breed_scores)} breeds")
else:
print("Multi-head scorer not available, using fallback scoring")
return self.get_semantic_recommendations(user_input, top_k)
# Stage 4: Score Calibration
breed_score_tuples = [(score.breed_name, score.final_score) for score in breed_scores]
calibration_result = self.score_calibrator.calibrate_scores(breed_score_tuples)
print(f"Score calibration: method={calibration_result.calibration_method}")
# Stage 5: Generate Final Recommendations
final_recommendations = []
for i, breed_score in enumerate(breed_scores[:top_k]):
breed_name = breed_score.breed_name
# Get calibrated score
calibrated_score = calibration_result.score_mapping.get(breed_name, breed_score.final_score)
# Get standardized breed info
standardized_info = get_standardized_breed_data(breed_name.replace(' ', '_'))
if standardized_info:
breed_info = self._get_breed_info_from_standardized(standardized_info)
else:
breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}
recommendation = {
'breed': breed_name,
'rank': i + 1,
'overall_score': calibrated_score,
'final_score': calibrated_score,
'semantic_score': breed_score.semantic_component,
'attribute_score': breed_score.attribute_component,
'bidirectional_bonus': breed_score.bidirectional_bonus,
'confidence_score': breed_score.confidence_score,
'dimensional_breakdown': breed_score.dimensional_breakdown,
'explanation': breed_score.explanation,
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', ''),
'search_type': 'enhanced_description',
'calibration_method': calibration_result.calibration_method,
'applied_constraints': filter_result.applied_constraints,
'relaxed_constraints': filter_result.relaxed_constraints,
'warnings': filter_result.warnings
}
final_recommendations.append(recommendation)
# Apply size distribution correction before returning
corrected_recommendations = self._apply_size_distribution_correction(final_recommendations)
# Stage 6: Apply Intelligent Trait Matching Enhancement
intelligence_enhanced_recommendations = self._apply_intelligent_trait_matching(corrected_recommendations, user_input)
print(f"Generated {len(intelligence_enhanced_recommendations)} enhanced semantic recommendations with intelligent trait matching")
return intelligence_enhanced_recommendations
except Exception as e:
print(f"Error in enhanced semantic recommendations: {str(e)}")
print(traceback.format_exc())
# Fallback to original method
return self.get_semantic_recommendations(user_input, top_k)
def _apply_intelligent_trait_matching(self, recommendations: List[Dict], user_input: str) -> List[Dict]:
"""Apply intelligent trait matching based on enhanced keyword extraction and database mining"""
try:
# Extract enhanced keywords from user input
extracted_keywords = self._extract_lifestyle_keywords(user_input)
# Apply intelligent trait matching to each recommendation
enhanced_recommendations = []
for rec in recommendations:
breed_name = rec['breed'].replace(' ', '_')
# Get breed database information
breed_info = get_dog_description(breed_name) or {}
# Calculate intelligent trait bonuses
intelligence_bonus = 0.0
trait_match_details = {}
# 1. Intelligence Matching
if extracted_keywords.get('intelligence_preference'):
intelligence_pref = extracted_keywords['intelligence_preference'][0]
breed_desc = breed_info.get('Description', '').lower()
if intelligence_pref == 'high':
if any(word in breed_desc for word in ['intelligent', 'smart', 'clever', 'quick to learn', 'trainable']):
intelligence_bonus += 0.05
trait_match_details['intelligence_match'] = 'High intelligence match detected'
elif any(word in breed_desc for word in ['stubborn', 'independent', 'difficult']):
intelligence_bonus -= 0.02
trait_match_details['intelligence_warning'] = 'May be challenging to train'
elif intelligence_pref == 'independent':
if any(word in breed_desc for word in ['independent', 'stubborn', 'strong-willed']):
intelligence_bonus += 0.03
trait_match_details['independence_match'] = 'Independent nature match'
# 2. Grooming Preference Matching
if extracted_keywords.get('grooming_preference'):
grooming_pref = extracted_keywords['grooming_preference'][0]
breed_grooming = breed_info.get('Grooming Needs', '').lower()
if grooming_pref == 'low' and 'low' in breed_grooming:
intelligence_bonus += 0.03
trait_match_details['grooming_match'] = 'Low maintenance grooming match'
elif grooming_pref == 'high' and 'high' in breed_grooming:
intelligence_bonus += 0.03
trait_match_details['grooming_match'] = 'High maintenance grooming match'
elif grooming_pref == 'low' and 'high' in breed_grooming:
intelligence_bonus -= 0.04
trait_match_details['grooming_mismatch'] = 'High grooming needs may not suit preferences'
# 3. Temperament Preference Matching
if extracted_keywords.get('temperament_preference'):
temp_prefs = extracted_keywords['temperament_preference']
breed_temperament = breed_info.get('Temperament', '').lower()
breed_desc = breed_info.get('Description', '').lower()
temp_text = (breed_temperament + ' ' + breed_desc).lower()
for temp_pref in temp_prefs:
if temp_pref == 'gentle' and any(word in temp_text for word in ['gentle', 'calm', 'peaceful', 'mild']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Gentle temperament match: {temp_pref}'
elif temp_pref == 'playful' and any(word in temp_text for word in ['playful', 'energetic', 'lively', 'fun']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Playful temperament match: {temp_pref}'
elif temp_pref == 'protective' and any(word in temp_text for word in ['protective', 'guard', 'alert', 'watchful']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Protective temperament match: {temp_pref}'
elif temp_pref == 'friendly' and any(word in temp_text for word in ['friendly', 'social', 'outgoing', 'people']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Friendly temperament match: {temp_pref}'
# 4. Experience Level Matching
if extracted_keywords.get('experience_level'):
exp_level = extracted_keywords['experience_level'][0]
breed_desc = breed_info.get('Description', '').lower()
if exp_level == 'beginner':
# Favor easy-to-handle breeds for beginners
if any(word in breed_desc for word in ['easy', 'gentle', 'good for beginners', 'family', 'calm']):
intelligence_bonus += 0.06
trait_match_details['beginner_friendly'] = 'Good choice for first-time owners'
elif any(word in breed_desc for word in ['challenging', 'dominant', 'requires experience', 'strong-willed']):
intelligence_bonus -= 0.08
trait_match_details['experience_warning'] = 'May be challenging for first-time owners'
elif exp_level == 'advanced':
# Advanced users can handle more challenging breeds
if any(word in breed_desc for word in ['working', 'requires experience', 'intelligent', 'strong']):
intelligence_bonus += 0.03
trait_match_details['advanced_suitable'] = 'Good match for experienced owners'
# 5. Lifespan Preference Matching
if extracted_keywords.get('lifespan_preference'):
lifespan_pref = extracted_keywords['lifespan_preference'][0]
breed_lifespan = breed_info.get('Lifespan', '10-12 years')
try:
import re
years = re.findall(r'\d+', breed_lifespan)
if years:
avg_years = sum(int(y) for y in years) / len(years)
if lifespan_pref == 'long' and avg_years >= 13:
intelligence_bonus += 0.02
trait_match_details['longevity_match'] = f'Long lifespan match: {breed_lifespan}'
elif lifespan_pref == 'healthy' and avg_years >= 12:
intelligence_bonus += 0.02
trait_match_details['health_match'] = f'Healthy lifespan: {breed_lifespan}'
except:
pass
# Apply the intelligence bonus to the overall score
original_score = rec['overall_score']
enhanced_score = min(1.0, original_score + intelligence_bonus)
# Create enhanced recommendation with trait matching details
enhanced_rec = rec.copy()
enhanced_rec['overall_score'] = enhanced_score
enhanced_rec['intelligence_bonus'] = intelligence_bonus
enhanced_rec['trait_match_details'] = trait_match_details
# Add detailed explanation if significant enhancement occurred
if abs(intelligence_bonus) > 0.02:
enhancement_explanation = []
for detail_key, detail_value in trait_match_details.items():
enhancement_explanation.append(detail_value)
if enhancement_explanation:
current_explanation = enhanced_rec.get('explanation', '')
enhanced_explanation = current_explanation + f" Enhanced matching: {'; '.join(enhancement_explanation)}"
enhanced_rec['explanation'] = enhanced_explanation
enhanced_recommendations.append(enhanced_rec)
# Re-sort by enhanced overall score
enhanced_recommendations.sort(key=lambda x: x['overall_score'], reverse=True)
# Update ranks
for i, rec in enumerate(enhanced_recommendations):
rec['rank'] = i + 1
print(f"Applied intelligent trait matching with average bonus: {sum(r['intelligence_bonus'] for r in enhanced_recommendations) / len(enhanced_recommendations):.3f}")
return enhanced_recommendations
except Exception as e:
print(f"Error in intelligent trait matching: {str(e)}")
# Return original recommendations if trait matching fails
return recommendations
def get_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
Get breed recommendations based on natural language description
Args:
user_input: User's natural language description
top_k: Number of recommendations to return
Returns:
List of recommended breeds
"""
try:
print(f"Processing user input: {user_input}")
# Check if model is available - if not, raise error
if self.sbert_model is None:
error_msg = "SBERT model not available. This could be due to:\n• Model download failed\n• Insufficient memory\n• Network connectivity issues\n\nPlease check your environment and try again."
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg)
# Generate user input embedding
user_embedding = self.sbert_model.encode(user_input, convert_to_tensor=False)
# Parse comparative preferences
comparative_prefs = self._parse_comparative_preferences(user_input)
# Extract lifestyle keywords
lifestyle_keywords = self._extract_lifestyle_keywords(user_input)
# Calculate similarity with all breeds and apply constraints
similarities = []
for breed, breed_vector in self.breed_vectors.items():
# Apply hard constraints first
constraint_penalty = self._apply_hard_constraints(breed, user_input, breed_vector.characteristics)
# Skip breeds that violate critical constraints
if constraint_penalty <= -1.0: # Complete disqualification
continue
# Basic semantic similarity
semantic_score = cosine_similarity(
[user_embedding],
[breed_vector.embedding]
)[0][0]
# Comparative preference weighting
comparative_bonus = comparative_prefs.get(breed, 0.0)
# Lifestyle matching bonus
lifestyle_bonus = self._calculate_lifestyle_bonus(
breed_vector.characteristics,
lifestyle_keywords
)
# Apply constraint penalties
lifestyle_bonus += constraint_penalty
# Enhanced combined score with better distribution
# Apply exponential scaling to create more natural score spread
base_semantic = semantic_score ** 0.8 # Slightly compress high scores
enhanced_lifestyle = lifestyle_bonus * 2.0 # Amplify lifestyle matching
enhanced_comparative = comparative_bonus * 1.5 # Amplify breed preferences
final_score = (
base_semantic * 0.55 +
enhanced_comparative * 0.30 +
enhanced_lifestyle * 0.15
)
# Add small random variation to break ties naturally
random.seed(hash(breed)) # Consistent for same breed
final_score += random.uniform(-0.03, 0.03)
# Ensure final score doesn't exceed 1.0
final_score = min(1.0, final_score)
similarities.append({
'breed': breed,
'score': final_score,
'semantic_score': semantic_score,
'comparative_bonus': comparative_bonus,
'lifestyle_bonus': lifestyle_bonus
})
# Calculate standardized display scores with balanced distribution
breed_display_scores = []
# First, collect all semantic scores for normalization
all_semantic_scores = [breed_data['semantic_score'] for breed_data in similarities]
semantic_mean = np.mean(all_semantic_scores)
semantic_std = np.std(all_semantic_scores) if len(all_semantic_scores) > 1 else 1.0
for breed_data in similarities:
breed = breed_data['breed']
base_semantic = breed_data['semantic_score']
# Normalize semantic score to prevent extreme outliers
if semantic_std > 0:
normalized_semantic = (base_semantic - semantic_mean) / semantic_std
normalized_semantic = max(-2.0, min(2.0, normalized_semantic)) # Cap at 2 standard deviations
scaled_semantic = 0.5 + (normalized_semantic * 0.1) # Map to 0.3-0.7 range
else:
scaled_semantic = 0.5
# Get breed characteristics
breed_info = get_dog_description(breed) if breed != 'Unknown' else {}
breed_size = breed_info.get('Size', '').lower() if breed_info else ''
exercise_needs = breed_info.get('Exercise Needs', '').lower() if breed_info else ''
# Calculate feature matching score (more important than pure semantic similarity)
feature_score = 0.0
user_text = user_input.lower()
# Size and space requirements (high weight)
if any(term in user_text for term in ['apartment', 'small', 'limited space']):
if 'small' in breed_size:
feature_score += 0.25
elif 'medium' in breed_size:
feature_score += 0.05
elif 'large' in breed_size or 'giant' in breed_size:
feature_score -= 0.30
# Exercise requirements (high weight)
if any(term in user_text for term in ['low exercise', 'minimal exercise', "doesn't need", 'not much']):
if 'low' in exercise_needs or 'minimal' in exercise_needs:
feature_score += 0.20
elif 'high' in exercise_needs or 'very high' in exercise_needs:
feature_score -= 0.25
elif any(term in user_text for term in ['active', 'high exercise', 'running', 'hiking']):
if 'high' in exercise_needs:
feature_score += 0.20
elif 'low' in exercise_needs:
feature_score -= 0.15
# Family compatibility
if any(term in user_text for term in ['children', 'kids', 'family']):
good_with_children = breed_info.get('Good with Children', '') if breed_info else ''
if good_with_children == 'Yes':
feature_score += 0.10
elif good_with_children == 'No':
feature_score -= 0.20
# Combine scores with balanced weights
final_score = (
scaled_semantic * 0.35 + # Reduced semantic weight
feature_score * 0.45 + # Increased feature matching weight
breed_data['lifestyle_bonus'] * 0.15 +
breed_data['comparative_bonus'] * 0.05
)
# Calculate base compatibility score
base_compatibility = final_score
# Apply dynamic scoring with natural distribution
if base_compatibility >= 0.9: # Exceptional matches
score_range = (0.92, 0.98)
position = (base_compatibility - 0.9) / 0.1
elif base_compatibility >= 0.75: # Excellent matches
score_range = (0.85, 0.91)
position = (base_compatibility - 0.75) / 0.15
elif base_compatibility >= 0.6: # Good matches
score_range = (0.75, 0.84)
position = (base_compatibility - 0.6) / 0.15
elif base_compatibility >= 0.45: # Fair matches
score_range = (0.65, 0.74)
position = (base_compatibility - 0.45) / 0.15
elif base_compatibility >= 0.3: # Poor matches
score_range = (0.55, 0.64)
position = (base_compatibility - 0.3) / 0.15
else: # Very poor matches
score_range = (0.45, 0.54)
position = max(0, base_compatibility / 0.3)
# Calculate final score with natural variation
score_span = score_range[1] - score_range[0]
base_score = score_range[0] + (position * score_span)
# Add controlled random variation for natural ranking
random.seed(hash(breed + user_input[:15]))
variation = random.uniform(-0.015, 0.015)
display_score = round(max(0.45, min(0.98, base_score + variation)), 3)
breed_display_scores.append({
'breed': breed,
'display_score': display_score,
'semantic_score': base_semantic,
'comparative_bonus': breed_data['comparative_bonus'],
'lifestyle_bonus': breed_data['lifestyle_bonus']
})
# Sort by display score to ensure ranking consistency
breed_display_scores.sort(key=lambda x: x['display_score'], reverse=True)
top_breeds = breed_display_scores[:top_k]
# Convert to standard recommendation format
recommendations = []
for i, breed_data in enumerate(top_breeds):
breed = breed_data['breed']
display_score = breed_data['display_score']
# Get detailed information
breed_info = get_dog_description(breed)
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1,
'overall_score': display_score, # Use display score for consistency
'final_score': display_score, # Ensure final_score matches overall_score
'semantic_score': breed_data['semantic_score'],
'comparative_bonus': breed_data['comparative_bonus'],
'lifestyle_bonus': breed_data['lifestyle_bonus'],
'size': breed_info.get('Size', 'Unknown') if breed_info else 'Unknown',
'temperament': breed_info.get('Temperament', '') if breed_info else '',
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate',
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate',
'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes',
'lifespan': breed_info.get('Lifespan', '10-12 years') if breed_info else '10-12 years',
'description': breed_info.get('Description', '') if breed_info else '',
'search_type': 'description'
}
recommendations.append(recommendation)
print(f"Generated {len(recommendations)} semantic recommendations")
return recommendations
except Exception as e:
print(f"Failed to generate semantic recommendations: {str(e)}")
print(traceback.format_exc())
return []
def _calculate_lifestyle_bonus(self, breed_characteristics: Dict[str, Any],
lifestyle_keywords: Dict[str, List[str]]) -> float:
"""Enhanced lifestyle matching bonus calculation"""
bonus = 0.0
penalties = 0.0
# Enhanced size matching
breed_size = breed_characteristics.get('size', '').lower()
size_prefs = lifestyle_keywords.get('size_preference', [])
for pref in size_prefs:
if pref in breed_size:
bonus += 0.25 # Strong reward for size match
elif (pref == 'small' and 'large' in breed_size) or \
(pref == 'large' and 'small' in breed_size):
penalties += 0.15 # Penalty for size mismatch
# Enhanced activity level matching
breed_exercise = breed_characteristics.get('exercise_needs', '').lower()
activity_prefs = lifestyle_keywords.get('activity_level', [])
if 'high' in activity_prefs:
if 'high' in breed_exercise or 'very high' in breed_exercise:
bonus += 0.2
elif 'low' in breed_exercise:
penalties += 0.2
elif 'low' in activity_prefs:
if 'low' in breed_exercise:
bonus += 0.2
elif 'high' in breed_exercise or 'very high' in breed_exercise:
penalties += 0.25
elif 'moderate' in activity_prefs:
if 'moderate' in breed_exercise:
bonus += 0.15
# Enhanced family situation matching
good_with_children = breed_characteristics.get('good_with_children', 'Yes')
family_prefs = lifestyle_keywords.get('family_situation', [])
if 'children' in family_prefs:
if good_with_children == 'Yes':
bonus += 0.15
else:
penalties += 0.3 # Strong penalty for non-child-friendly breeds
# Enhanced living space matching
living_prefs = lifestyle_keywords.get('living_space', [])
if 'apartment' in living_prefs:
if 'small' in breed_size:
bonus += 0.2
elif 'medium' in breed_size and 'low' in breed_exercise:
bonus += 0.1
elif 'large' in breed_size or 'giant' in breed_size:
penalties += 0.2 # Penalty for large dogs in apartments
# Noise preference matching
noise_prefs = lifestyle_keywords.get('noise_preference', [])
temperament = breed_characteristics.get('temperament', '').lower()
if 'low' in noise_prefs:
# Reward quiet breeds
if any(term in temperament for term in ['gentle', 'calm', 'quiet']):
bonus += 0.1
# Care level matching
grooming_needs = breed_characteristics.get('grooming_needs', '').lower()
care_prefs = lifestyle_keywords.get('care_level', [])
if 'low' in care_prefs and 'low' in grooming_needs:
bonus += 0.1
elif 'high' in care_prefs and 'high' in grooming_needs:
bonus += 0.1
elif 'low' in care_prefs and 'high' in grooming_needs:
penalties += 0.15
# Special needs matching
special_needs = lifestyle_keywords.get('special_needs', [])
if 'guard' in special_needs:
if any(term in temperament for term in ['protective', 'alert', 'watchful']):
bonus += 0.1
elif 'companion' in special_needs:
if any(term in temperament for term in ['affectionate', 'gentle', 'loyal']):
bonus += 0.1
# Calculate final bonus with penalties
final_bonus = bonus - penalties
return max(-0.3, min(0.5, final_bonus)) # Allow negative bonus but limit range
def _get_breed_info_from_standardized(self, standardized_info) -> Dict[str, Any]:
"""Convert standardized breed info to dictionary format"""
try:
size_map = {1: 'Tiny', 2: 'Small', 3: 'Medium', 4: 'Large', 5: 'Giant'}
exercise_map = {1: 'Low', 2: 'Moderate', 3: 'High', 4: 'Very High'}
care_map = {1: 'Low', 2: 'Moderate', 3: 'High'}
return {
'Size': size_map.get(standardized_info.size_category, 'Medium'),
'Exercise Needs': exercise_map.get(standardized_info.exercise_level, 'Moderate'),
'Grooming Needs': care_map.get(standardized_info.care_complexity, 'Moderate'),
'Good with Children': 'Yes' if standardized_info.child_compatibility >= 0.8 else
'No' if standardized_info.child_compatibility <= 0.2 else 'Unknown',
'Temperament': 'Varies by individual',
'Lifespan': '10-12 years',
'Description': f'A {size_map.get(standardized_info.size_category, "medium")} sized breed'
}
except Exception as e:
print(f"Error converting standardized info: {str(e)}")
return {}
def _get_fallback_recommendations(self, top_k: int = 15) -> List[Dict[str, Any]]:
"""Get fallback recommendations when enhanced system fails"""
try:
safe_breeds = [
('Labrador Retriever', 0.85),
('Golden Retriever', 0.82),
('Cavalier King Charles Spaniel', 0.80),
('French Bulldog', 0.78),
('Boston Terrier', 0.76),
('Bichon Frise', 0.74),
('Pug', 0.72),
('Cocker Spaniel', 0.70)
]
recommendations = []
for i, (breed, score) in enumerate(safe_breeds[:top_k]):
breed_info = get_dog_description(breed.replace(' ', '_')) or {}
recommendation = {
'breed': breed,
'rank': i + 1,
'overall_score': score,
'final_score': score,
'semantic_score': score * 0.8,
'comparative_bonus': 0.0,
'lifestyle_bonus': 0.0,
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', ''),
'search_type': 'fallback'
}
recommendations.append(recommendation)
return recommendations
except Exception as e:
print(f"Error generating fallback recommendations: {str(e)}")
return []
def get_enhanced_recommendations_with_unified_scoring(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""簡化的增強推薦方法"""
try:
print(f"Processing enhanced recommendation: {user_input[:50]}...")
# 使用基本語意匹配
return self.get_semantic_recommendations(user_input, top_k)
except Exception as e:
error_msg = f"Enhanced recommendation error: {str(e)}. Please check your description."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def _analyze_user_description_enhanced(self, user_description: str) -> Dict[str, Any]:
"""增強用戶描述分析"""
text = user_description.lower()
analysis = {
'mentioned_breeds': [],
'lifestyle_keywords': {},
'preference_strength': {},
'constraint_requirements': [],
'user_context': {}
}
# 提取提及的品種
for breed in self.breed_list:
breed_display = breed.replace('_', ' ').lower()
if breed_display in text or any(word in text for word in breed_display.split()):
analysis['mentioned_breeds'].append(breed)
# 簡單偏好強度分析
if any(word in text for word in ['love', 'prefer', 'like', '喜歡', '最愛']):
analysis['preference_strength'][breed] = 0.8
else:
analysis['preference_strength'][breed] = 0.5
# 提取約束要求
if any(word in text for word in ['quiet', 'silent', 'no barking', '安靜']):
analysis['constraint_requirements'].append('low_noise')
if any(word in text for word in ['apartment', 'small space', '公寓']):
analysis['constraint_requirements'].append('apartment_suitable')
if any(word in text for word in ['children', 'kids', 'family', '小孩']):
analysis['constraint_requirements'].append('child_friendly')
# 提取用戶背景
analysis['user_context'] = {
'has_children': any(word in text for word in ['children', 'kids', '小孩']),
'living_space': 'apartment' if any(word in text for word in ['apartment', '公寓']) else 'house',
'activity_level': 'high' if any(word in text for word in ['active', 'energetic', '活躍']) else 'moderate',
'noise_sensitive': any(word in text for word in ['quiet', 'silent', '安靜']),
'experience_level': 'beginner' if any(word in text for word in ['first time', 'beginner', '新手']) else 'intermediate'
}
return analysis
def _create_user_preferences_from_analysis_enhanced(self, analysis: Dict[str, Any]) -> UserPreferences:
"""從分析結果創建用戶偏好物件"""
context = analysis['user_context']
# 推斷居住空間類型
living_space = 'apartment' if context.get('living_space') == 'apartment' else 'house_small'
# 推斷院子權限
yard_access = 'no_yard' if living_space == 'apartment' else 'shared_yard'
# 推斷運動時間
activity_level = context.get('activity_level', 'moderate')
exercise_time_map = {'high': 120, 'moderate': 60, 'low': 30}
exercise_time = exercise_time_map.get(activity_level, 60)
# 推斷運動類型
exercise_type_map = {'high': 'active_training', 'moderate': 'moderate_activity', 'low': 'light_walks'}
exercise_type = exercise_type_map.get(activity_level, 'moderate_activity')
# 推斷噪音容忍度
noise_tolerance = 'low' if context.get('noise_sensitive', False) else 'medium'
return UserPreferences(
living_space=living_space,
yard_access=yard_access,
exercise_time=exercise_time,
exercise_type=exercise_type,
grooming_commitment='medium',
experience_level=context.get('experience_level', 'intermediate'),
time_availability='moderate',
has_children=context.get('has_children', False),
children_age='school_age' if context.get('has_children', False) else None,
noise_tolerance=noise_tolerance,
space_for_play=(living_space != 'apartment'),
other_pets=False,
climate='moderate',
health_sensitivity='medium',
barking_acceptance=noise_tolerance,
size_preference='no_preference'
)
def _get_candidate_breeds_enhanced(self, analysis: Dict[str, Any]) -> List[str]:
"""獲取候選品種列表"""
candidate_breeds = set()
# 如果提及特定品種,優先包含
if analysis['mentioned_breeds']:
candidate_breeds.update(analysis['mentioned_breeds'])
# 根據約束要求過濾品種
if 'apartment_suitable' in analysis['constraint_requirements']:
apartment_suitable = [
'French_Bulldog', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
'Pug', 'Bichon_Frise', 'Cocker_Spaniel', 'Yorkshire_Terrier', 'Shih_Tzu'
]
candidate_breeds.update(breed for breed in apartment_suitable if breed in self.breed_list)
if 'child_friendly' in analysis['constraint_requirements']:
child_friendly = [
'Labrador_Retriever', 'Golden_Retriever', 'Beagle', 'Cavalier_King_Charles_Spaniel',
'Bichon_Frise', 'Poodle', 'Cocker_Spaniel'
]
candidate_breeds.update(breed for breed in child_friendly if breed in self.breed_list)
# 如果候選品種不足,添加更多通用品種
if len(candidate_breeds) < 20:
general_breeds = [
'Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever', 'French_Bulldog',
'Bulldog', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier', 'Boston_Terrier',
'Border_Collie', 'Siberian_Husky', 'Cavalier_King_Charles_Spaniel', 'Boxer',
'Bichon_Frise', 'Cocker_Spaniel', 'Shih_Tzu', 'Pug', 'Chihuahua'
]
candidate_breeds.update(breed for breed in general_breeds if breed in self.breed_list)
return list(candidate_breeds)[:30] # 限制候選數量以提高效率
def _apply_constraint_filtering_enhanced(self, breed: str, analysis: Dict[str, Any]) -> float:
"""應用約束過濾,返回調整分數"""
penalty = 0.0
breed_info = get_dog_description(breed)
if not breed_info:
return penalty
# 低噪音要求
if 'low_noise' in analysis['constraint_requirements']:
noise_info = breed_noise_info.get(breed, {})
noise_level = noise_info.get('noise_level', 'moderate').lower()
if 'high' in noise_level:
penalty -= 0.3 # 嚴重扣分
elif 'low' in noise_level:
penalty += 0.1 # 輕微加分
# 公寓適合性
if 'apartment_suitable' in analysis['constraint_requirements']:
size = breed_info.get('Size', '').lower()
exercise_needs = breed_info.get('Exercise Needs', '').lower()
if size in ['large', 'giant']:
penalty -= 0.2
elif size in ['small', 'tiny']:
penalty += 0.1
if 'high' in exercise_needs:
penalty -= 0.15
# 兒童友善性
if 'child_friendly' in analysis['constraint_requirements']:
good_with_children = breed_info.get('Good with Children', 'Unknown')
if good_with_children == 'Yes':
penalty += 0.15
elif good_with_children == 'No':
penalty -= 0.4 # 嚴重扣分
return penalty
def _get_breed_characteristics_enhanced(self, breed: str) -> Dict[str, Any]:
"""獲取品種特徵"""
breed_info = get_dog_description(breed)
if not breed_info:
return {}
characteristics = {
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Unknown'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', '')
}
# 添加噪音資訊
noise_info = breed_noise_info.get(breed, {})
characteristics['noise_level'] = noise_info.get('noise_level', 'moderate')
return characteristics
def get_hybrid_recommendations(self, user_description: str,
user_preferences: Optional[Any] = None,
top_k: int = 15) -> List[Dict[str, Any]]:
"""
Hybrid recommendations: Combine semantic matching with traditional scoring
Args:
user_description: User's natural language description
user_preferences: Optional structured preference settings
top_k: Number of recommendations to return
Returns:
Hybrid recommendation results
"""
try:
# Get semantic recommendations
semantic_recommendations = self.get_semantic_recommendations(user_description, top_k * 2)
if not user_preferences:
return semantic_recommendations[:top_k]
# Combine with traditional scoring
hybrid_results = []
for semantic_rec in semantic_recommendations:
breed_name = semantic_rec['breed'].replace(' ', '_')
# Calculate traditional compatibility score
traditional_score = calculate_compatibility_score(user_preferences, breed_name)
# Hybrid score (semantic 40% + traditional 60%)
hybrid_score = (
semantic_rec['overall_score'] * 0.4 +
traditional_score * 0.6
)
semantic_rec['hybrid_score'] = hybrid_score
semantic_rec['traditional_score'] = traditional_score
hybrid_results.append(semantic_rec)
# Re-sort by hybrid score
hybrid_results.sort(key=lambda x: x['hybrid_score'], reverse=True)
# Update rankings
for i, result in enumerate(hybrid_results[:top_k]):
result['rank'] = i + 1
result['overall_score'] = result['hybrid_score']
return hybrid_results[:top_k]
except Exception as e:
print(f"Hybrid recommendation failed: {str(e)}")
print(traceback.format_exc())
return self.get_semantic_recommendations(user_description, top_k)
def get_breed_recommendations_by_description(user_description: str,
user_preferences: Optional[Any] = None,
top_k: int = 15) -> List[Dict[str, Any]]:
"""Main interface function for getting breed recommendations by description"""
try:
print("Initializing Enhanced SemanticBreedRecommender...")
recommender = SemanticBreedRecommender()
# 優先使用整合統一評分系統的增強推薦
print("Using enhanced recommendation system with unified scoring")
results = recommender.get_enhanced_recommendations_with_unified_scoring(user_description, top_k)
if results and len(results) > 0:
print(f"Generated {len(results)} enhanced recommendations successfully")
return results
else:
# 如果增強系統無結果,嘗試原有增強系統
print("Enhanced unified system returned no results, trying original enhanced system")
results = recommender.get_enhanced_semantic_recommendations(user_description, top_k)
if results and len(results) > 0:
return results
else:
# 最後回退到標準系統
print("All enhanced systems failed, using standard system")
if user_preferences:
results = recommender.get_hybrid_recommendations(user_description, user_preferences, top_k)
else:
results = recommender.get_semantic_recommendations(user_description, top_k)
if not results:
error_msg = f"All recommendation systems failed to generate results. Please check your input description and try again. Error details may be in the console."
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg)
return results
except Exception as e:
error_msg = f"Critical error in recommendation system: {str(e)}. Please check your input and system configuration."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def get_enhanced_recommendations_with_unified_scoring(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""簡化版本:基本語意推薦功能"""
try:
print(f"Processing description-based recommendation: {user_description[:50]}...")
# 創建基本推薦器實例
recommender = SemanticBreedRecommender()
if not recommender.sbert_model:
print("SBERT model not available, using basic text matching...")
# 使用基本文字匹配邏輯
return _get_basic_text_matching_recommendations(user_description, top_k)
# 使用語意相似度推薦
recommendations = []
user_embedding = recommender.sbert_model.encode(user_description)
# 計算所有品種的增強分數
all_breed_scores = []
for breed_name, breed_vector in recommender.breed_vectors.items():
breed_embedding = breed_vector.embedding
similarity = cosine_similarity([user_embedding], [breed_embedding])[0][0]
# 獲取品種資料
breed_info = get_dog_description(breed_name) or {}
# 計算增強的匹配分數
enhanced_score = _calculate_enhanced_matching_score(
breed_name, breed_info, user_description, similarity
)
all_breed_scores.append((breed_name, enhanced_score, breed_info, similarity))
# 按 final_score 排序(而不是語意相似度)
all_breed_scores.sort(key=lambda x: x[1]['final_score'], reverse=True)
top_breeds = all_breed_scores[:top_k]
for i, (breed, enhanced_score, breed_info, similarity) in enumerate(top_breeds):
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1, # 正確的排名
'overall_score': enhanced_score['final_score'],
'final_score': enhanced_score['final_score'],
'semantic_score': similarity,
'comparative_bonus': enhanced_score['lifestyle_bonus'],
'lifestyle_bonus': enhanced_score['lifestyle_bonus'],
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', 'Unknown'),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Unknown'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', 'No description available'),
'search_type': 'description',
'scores': enhanced_score['dimension_scores']
}
recommendations.append(recommendation)
print(f"Generated {len(recommendations)} semantic recommendations")
return recommendations
except Exception as e:
error_msg = f"Error in semantic recommendation system: {str(e)}. Please check your input and try again."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def _calculate_enhanced_matching_score(breed: str, breed_info: dict, user_description: str, base_similarity: float) -> dict:
"""計算增強的匹配分數,基於用戶描述和品種特性"""
try:
user_desc = user_description.lower()
# 分析用戶需求
space_requirements = _analyze_space_requirements(user_desc)
exercise_requirements = _analyze_exercise_requirements(user_desc)
noise_requirements = _analyze_noise_requirements(user_desc)
size_requirements = _analyze_size_requirements(user_desc)
family_requirements = _analyze_family_requirements(user_desc)
# 獲取品種特性
breed_size = breed_info.get('Size', '').lower()
breed_exercise = breed_info.get('Exercise Needs', '').lower()
breed_noise = breed_noise_info.get(breed, {}).get('noise_level', 'moderate').lower()
breed_temperament = breed_info.get('Temperament', '').lower()
breed_good_with_children = breed_info.get('Good with Children', '').lower()
# 計算各維度匹配分數
dimension_scores = {}
# 空間匹配 (30% 權重)
space_score = _calculate_space_compatibility(space_requirements, breed_size, breed_exercise)
dimension_scores['space'] = space_score
# 運動需求匹配 (25% 權重)
exercise_score = _calculate_exercise_compatibility(exercise_requirements, breed_exercise)
dimension_scores['exercise'] = exercise_score
# 噪音匹配 (20% 權重)
noise_score = _calculate_noise_compatibility(noise_requirements, breed_noise)
dimension_scores['noise'] = noise_score
# 體型匹配 (15% 權重)
size_score = _calculate_size_compatibility(size_requirements, breed_size)
dimension_scores['grooming'] = min(0.9, base_similarity + 0.1) # 美容需求基於語意相似度
# 家庭相容性 (10% 權重)
family_score = _calculate_family_compatibility(family_requirements, breed_good_with_children, breed_temperament)
dimension_scores['family'] = family_score
dimension_scores['experience'] = min(0.9, base_similarity + 0.05) # 經驗需求基於語意相似度
# 應用硬約束過濾
constraint_penalty = _apply_hard_constraints_enhanced(user_desc, breed_info)
# 計算加權總分 - 精確化維度權重配置
# 根據指導建議重新平衡維度權重
weighted_score = (
space_score * 0.30 + # 空間相容性(降低5%)
exercise_score * 0.28 + # 運動需求匹配(降低2%)
noise_score * 0.18 + # 噪音控制(提升3%)
family_score * 0.12 + # 家庭相容性(提升2%)
size_score * 0.08 + # 體型匹配(降低2%)
min(0.9, base_similarity + 0.1) * 0.04 # 護理需求(新增獨立權重)
)
# 優化完美匹配獎勵機制 - 降低觸發門檻並增加層次
perfect_match_bonus = 0.0
if space_score >= 0.88 and exercise_score >= 0.88 and noise_score >= 0.85:
perfect_match_bonus = 0.08 # 卓越匹配獎勵
elif space_score >= 0.82 and exercise_score >= 0.82 and noise_score >= 0.75:
perfect_match_bonus = 0.04 # 優秀匹配獎勵
elif space_score >= 0.75 and exercise_score >= 0.75:
perfect_match_bonus = 0.02 # 良好匹配獎勵
# 結合語意相似度與維度匹配 - 調整為75%維度匹配 25%語義相似度
base_combined_score = (weighted_score * 0.75 + base_similarity * 0.25) + perfect_match_bonus
# 應用漸進式約束懲罰,但確保基礎分數保障
raw_final_score = base_combined_score + constraint_penalty
# 實施動態分數保障機制 - 提升至40-42%基礎分數
# 根據品種特性動態調整基礎分數
base_guaranteed_score = 0.42 # 提升基礎保障分數
# 特殊品種基礎分數調整
high_adaptability_breeds = ['French_Bulldog', 'Pug', 'Golden_Retriever', 'Labrador_Retriever']
if any(breed in breed for breed in high_adaptability_breeds):
base_guaranteed_score = 0.45 # 高適應性品種更高基礎分數
# 動態分數分佈優化
if raw_final_score >= base_guaranteed_score:
# 對於高分品種,實施適度壓縮避免過度集中
if raw_final_score > 0.85:
compression_factor = 0.92 # 輕度壓縮高分
final_score = 0.85 + (raw_final_score - 0.85) * compression_factor
else:
final_score = raw_final_score
final_score = min(0.93, final_score) # 降低最高分數限制
else:
# 對於低分品種,使用改進的保障機制
normalized_raw_score = max(0.15, raw_final_score)
# 基礎保障75% + 實際計算25%,保持一定區分度
final_score = base_guaranteed_score * 0.75 + normalized_raw_score * 0.25
final_score = max(base_guaranteed_score, min(0.93, final_score))
lifestyle_bonus = max(0.0, weighted_score - base_similarity)
return {
'final_score': final_score,
'weighted_score': weighted_score,
'lifestyle_bonus': lifestyle_bonus,
'dimension_scores': dimension_scores,
'constraint_penalty': constraint_penalty
}
except Exception as e:
print(f"Error in enhanced matching calculation for {breed}: {str(e)}")
return {
'final_score': base_similarity,
'weighted_score': base_similarity,
'lifestyle_bonus': 0.0,
'dimension_scores': {
'space': base_similarity * 0.9,
'exercise': base_similarity * 0.85,
'grooming': base_similarity * 0.8,
'experience': base_similarity * 0.75,
'noise': base_similarity * 0.7,
'family': base_similarity * 0.65
},
'constraint_penalty': 0.0
}
def _analyze_space_requirements(user_desc: str) -> dict:
"""分析空間需求 - 增強中等活動量識別"""
requirements = {'type': 'unknown', 'size': 'medium', 'importance': 0.5}
if any(word in user_desc for word in ['apartment', 'small apartment', 'small space', 'condo', 'flat']):
requirements['type'] = 'apartment'
requirements['size'] = 'small'
requirements['importance'] = 0.95 # 提高重要性
elif any(word in user_desc for word in ['medium-sized house', 'medium house', 'townhouse']):
requirements['type'] = 'medium_house'
requirements['size'] = 'medium'
requirements['importance'] = 0.8 # 中等活動量用戶的特殊標記
elif any(word in user_desc for word in ['large house', 'big house', 'yard', 'garden', 'large space', 'backyard']):
requirements['type'] = 'house'
requirements['size'] = 'large'
requirements['importance'] = 0.7
return requirements
def _analyze_exercise_requirements(user_desc: str) -> dict:
"""分析運動需求 - 增強中等活動量識別"""
requirements = {'level': 'moderate', 'importance': 0.5}
# 低運動量識別
if any(word in user_desc for word in ["don't exercise", "don't exercise much", "low exercise", "minimal", "lazy", "not active"]):
requirements['level'] = 'low'
requirements['importance'] = 0.95
# 中等運動量的精確識別
elif any(phrase in user_desc for phrase in ['30 minutes', 'half hour', 'moderate', 'balanced', 'walk about']):
if 'walk' in user_desc or 'daily' in user_desc:
requirements['level'] = 'moderate'
requirements['importance'] = 0.85 # 中等活動量的特殊標記
# 高運動量識別
elif any(word in user_desc for word in ['active', 'hiking', 'outdoor activities', 'running', 'outdoors', 'love hiking']):
requirements['level'] = 'high'
requirements['importance'] = 0.9
return requirements
def _analyze_noise_requirements(user_desc: str) -> dict:
"""分析噪音需求"""
requirements = {'tolerance': 'medium', 'importance': 0.5}
if any(word in user_desc for word in ['quiet', 'no bark', "won't bark", "doesn't bark", 'silent', 'peaceful']):
requirements['tolerance'] = 'low'
requirements['importance'] = 0.9
elif any(word in user_desc for word in ['loud', 'barking ok', 'noise ok']):
requirements['tolerance'] = 'high'
requirements['importance'] = 0.7
return requirements
def _analyze_size_requirements(user_desc: str) -> dict:
"""分析體型需求"""
requirements = {'preferred': 'any', 'importance': 0.5}
if any(word in user_desc for word in ['small', 'tiny', 'little', 'lap dog', 'compact']):
requirements['preferred'] = 'small'
requirements['importance'] = 0.8
elif any(word in user_desc for word in ['large', 'big', 'giant']):
requirements['preferred'] = 'large'
requirements['importance'] = 0.8
return requirements
def _analyze_family_requirements(user_desc: str) -> dict:
"""分析家庭需求"""
requirements = {'children': False, 'importance': 0.3}
if any(word in user_desc for word in ['children', 'kids', 'family', 'child']):
requirements['children'] = True
requirements['importance'] = 0.8
return requirements
def _calculate_space_compatibility(space_req: dict, breed_size: str, breed_exercise: str) -> float:
"""計算空間相容性分數 - 增強中等活動量處理"""
if space_req['type'] == 'apartment':
if 'small' in breed_size or 'toy' in breed_size:
base_score = 0.95
elif 'medium' in breed_size:
if 'low' in breed_exercise:
base_score = 0.75
else:
base_score = 0.45 # 降低中型犬在公寓的分數
elif 'large' in breed_size:
base_score = 0.05 # 大型犬極度不適合公寓
elif 'giant' in breed_size:
base_score = 0.01 # 超大型犬完全不適合公寓
else:
base_score = 0.7
elif space_req['type'] == 'medium_house':
# 中型房屋的特殊處理 - 適合中等活動量用戶
if 'small' in breed_size or 'toy' in breed_size:
base_score = 0.9
elif 'medium' in breed_size:
base_score = 0.95 # 中型犬在中型房屋很適合
elif 'large' in breed_size:
if 'moderate' in breed_exercise or 'low' in breed_exercise:
base_score = 0.8 # 低運動量大型犬還可以
else:
base_score = 0.6 # 高運動量大型犬不太適合
elif 'giant' in breed_size:
base_score = 0.3 # 超大型犬在中型房屋不太適合
else:
base_score = 0.85
else:
# 大型房屋的情況
if 'small' in breed_size or 'toy' in breed_size:
base_score = 0.85
elif 'medium' in breed_size:
base_score = 0.9
elif 'large' in breed_size or 'giant' in breed_size:
base_score = 0.95
else:
base_score = 0.8
return min(0.95, base_score)
def _calculate_exercise_compatibility(exercise_req: dict, breed_exercise: str) -> float:
"""計算運動需求相容性分數 - 增強中等活動量處理"""
if exercise_req['level'] == 'low':
if 'low' in breed_exercise or 'minimal' in breed_exercise:
return 0.95
elif 'moderate' in breed_exercise:
return 0.5 # 降低不匹配分數
elif 'high' in breed_exercise:
return 0.1 # 進一步降低高運動需求的匹配
else:
return 0.7
elif exercise_req['level'] == 'high':
if 'high' in breed_exercise:
return 0.95
elif 'moderate' in breed_exercise:
return 0.8
elif 'low' in breed_exercise:
return 0.6
else:
return 0.7
else: # moderate - 中等活動量的精確處理
if 'moderate' in breed_exercise:
return 0.95 # 完美匹配
elif 'low' in breed_exercise:
return 0.85 # 低運動需求的品種對中等活動量用戶也不錯
elif 'high' in breed_exercise:
return 0.5 # 中等活動量用戶不太適合高運動需求品種
else:
return 0.75
return 0.6
def _calculate_noise_compatibility(noise_req: dict, breed_noise: str) -> float:
"""計算噪音相容性分數,更好處理複合等級"""
breed_noise_lower = breed_noise.lower()
if noise_req['tolerance'] == 'low':
if 'low' in breed_noise_lower and 'moderate' not in breed_noise_lower:
return 0.95 # 純低噪音
elif 'low-moderate' in breed_noise_lower or 'low to moderate' in breed_noise_lower:
return 0.8 # 低到中等噪音,還可接受
elif breed_noise_lower in ['moderate']:
return 0.4 # 中等噪音有些問題
elif 'high' in breed_noise_lower:
return 0.1 # 高噪音不適合
else:
return 0.6 # 未知噪音水平,保守估計
elif noise_req['tolerance'] == 'high':
if 'high' in breed_noise_lower:
return 0.9
elif 'moderate' in breed_noise_lower:
return 0.85
elif 'low' in breed_noise_lower:
return 0.8 # 安靜犬對高容忍度的人也很好
else:
return 0.8
else: # moderate tolerance
if 'moderate' in breed_noise_lower:
return 0.9
elif 'low' in breed_noise_lower:
return 0.85
elif 'high' in breed_noise_lower:
return 0.6
else:
return 0.75
return 0.7
def _calculate_size_compatibility(size_req: dict, breed_size: str) -> float:
"""計算體型相容性分數"""
if size_req['preferred'] == 'small':
if any(word in breed_size for word in ['small', 'toy', 'tiny']):
return 0.9
elif 'medium' in breed_size:
return 0.6
else:
return 0.3
elif size_req['preferred'] == 'large':
if any(word in breed_size for word in ['large', 'giant']):
return 0.9
elif 'medium' in breed_size:
return 0.7
else:
return 0.4
return 0.7 # 無特別偏好
def _calculate_family_compatibility(family_req: dict, good_with_children: str, temperament: str) -> float:
"""計算家庭相容性分數"""
if family_req['children']:
if 'yes' in good_with_children.lower():
return 0.9
elif any(word in temperament for word in ['gentle', 'patient', 'friendly']):
return 0.8
elif 'no' in good_with_children.lower():
return 0.2
else:
return 0.6
return 0.7
def _apply_hard_constraints_enhanced(user_desc: str, breed_info: dict) -> float:
"""應用品種特性感知的動態懲罰機制"""
penalty = 0.0
# 建立懲罰衰減係數和補償機制
penalty_decay_factor = 0.7
breed_adaptability_bonus = 0.0
breed_size = breed_info.get('Size', '').lower()
breed_exercise = breed_info.get('Exercise Needs', '').lower()
breed_name = breed_info.get('Breed', '').replace(' ', '_')
# 公寓空間約束 - 品種特性感知懲罰機制
if 'apartment' in user_desc or 'small apartment' in user_desc:
if 'giant' in breed_size:
base_penalty = -0.35 # 減少基礎懲罰
# 特定品種適應性補償
adaptable_giants = ['Mastiff', 'Great Dane'] # 相對安靜的巨型犬
if any(adapt_breed in breed_name for adapt_breed in adaptable_giants):
breed_adaptability_bonus += 0.08
penalty += base_penalty * penalty_decay_factor
elif 'large' in breed_size:
base_penalty = -0.25 # 減少大型犬懲罰
# 適合公寓的大型犬補償
apartment_friendly_large = ['Greyhound', 'Great_Dane']
if any(apt_breed in breed_name for apt_breed in apartment_friendly_large):
breed_adaptability_bonus += 0.06
penalty += base_penalty * penalty_decay_factor
elif 'medium' in breed_size and 'high' in breed_exercise:
penalty += -0.15 * penalty_decay_factor # 進一步減少懲罰
# 運動需求不匹配 - 品種特性感知懲罰機制
if any(phrase in user_desc for phrase in ["don't exercise", "not active", "low exercise", "don't exercise much"]):
if 'high' in breed_exercise:
base_penalty = -0.28 # 減少基礎懲罰
# 低維護高運動犬種補償
adaptable_high_energy = ['Greyhound', 'Whippet'] # 運動爆發型,平時安靜
if any(adapt_breed in breed_name for adapt_breed in adaptable_high_energy):
breed_adaptability_bonus += 0.10
penalty += base_penalty * penalty_decay_factor
elif 'moderate' in breed_exercise:
penalty += -0.08 * penalty_decay_factor # 進一步減少懲罰
# 噪音控制需求不匹配 - 品種特性感知懲罰機制
if any(phrase in user_desc for phrase in ['quiet', "won't bark", "doesn't bark", "silent"]):
breed_noise = breed_noise_info.get(breed_name, {}).get('noise_level', 'moderate').lower()
if 'high' in breed_noise:
base_penalty = -0.18 # 減少基礎懲罰
# 訓練性良好的高噪音品種補償
trainable_vocal_breeds = ['German_Shepherd', 'Golden_Retriever']
if any(train_breed in breed_name for train_breed in trainable_vocal_breeds):
breed_adaptability_bonus += 0.05
penalty += base_penalty * penalty_decay_factor
elif 'moderate' in breed_noise and 'low' not in breed_noise:
penalty += -0.05 * penalty_decay_factor
# 體型偏好不匹配 - 漸進式懲罰
if any(phrase in user_desc for phrase in ['small', 'tiny', 'little']):
if 'giant' in breed_size:
penalty -= 0.35 # 超大型犬懲罰
elif 'large' in breed_size:
penalty -= 0.20 # 大型犬懲罰
# 中等活動量用戶的特殊約束處理 - 漸進式懲罰
moderate_activity_terms = ['30 minutes', 'half hour', 'moderate', 'balanced', 'medium-sized house']
if any(term in user_desc for term in moderate_activity_terms):
# 超大型犬對中等活動量用戶的適度懲罰
giant_breeds = ['Saint Bernard', 'Tibetan Mastiff', 'Great Dane', 'Mastiff', 'Newfoundland']
if any(giant in breed_name for giant in giant_breeds) or 'giant' in breed_size:
penalty -= 0.35 # 適度懲罰,不完全排除
# 中型房屋 + 超大型犬的額外考量
if 'medium-sized house' in user_desc and any(giant in breed_name for giant in giant_breeds):
if not any(high_activity in user_desc for high_activity in ['hiking', 'running', 'active', 'outdoor activities']):
penalty -= 0.15 # 輕度額外懲罰
# 30分鐘散步對極高運動需求品種的懲罰
if any(term in user_desc for term in ['30 minutes', 'half hour']) and 'walk' in user_desc:
high_energy_breeds = ['Siberian Husky', 'Border Collie', 'Jack Russell Terrier', 'Weimaraner']
if any(he_breed in breed_name for he_breed in high_energy_breeds) and 'high' in breed_exercise:
penalty -= 0.25 # 適度懲罰極高運動需求品種
# 添加特殊品種適應性補償機制
# 對於邊界適配品種,給予適度補償
boundary_adaptable_breeds = {
'Italian_Greyhound': 0.08, # 安靜、低維護的小型犬
'Boston_Bull': 0.06, # 適應性強的小型犬
'Havanese': 0.05, # 友好適應的小型犬
'Silky_terrier': 0.04, # 安靜的玩具犬
'Basset': 0.07 # 低能量但友好的中型犬
}
if breed_name in boundary_adaptable_breeds:
breed_adaptability_bonus += boundary_adaptable_breeds[breed_name]
# 應用品種適應性補償並設置懲罰上限
final_penalty = penalty + breed_adaptability_bonus
# 限制最大懲罰,避免單一約束主導評分
final_penalty = max(-0.4, final_penalty)
return final_penalty
def _get_basic_text_matching_recommendations(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""基本文字匹配推薦(SBERT 不可用時的後備方案)"""
try:
print("Using basic text matching as fallback...")
# 基本關鍵字匹配
keywords = user_description.lower().split()
breed_scores = []
# 從數據庫獲取品種清單
try:
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog LIMIT 50")
basic_breeds = [row[0] for row in cursor.fetchall()]
cursor.close()
conn.close()
except Exception as e:
print(f"Could not load breed list from database: {str(e)}")
# 後備品種清單
basic_breeds = [
'Labrador_Retriever', 'Golden_Retriever', 'German_Shepherd', 'French_Bulldog',
'Border_Collie', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier',
'Dachshund', 'Boxer', 'Siberian_Husky', 'Great_Dane', 'Pomeranian', 'Shih-Tzu',
'Maltese_Dog', 'Chihuahua', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
'Japanese_Spaniel', 'Toy_Terrier', 'Affenpinscher', 'Pekingese', 'Lhasa'
]
for breed in basic_breeds:
breed_info = get_dog_description(breed) or {}
breed_text = f"{breed} {breed_info.get('Temperament', '')} {breed_info.get('Size', '')} {breed_info.get('Description', '')}".lower()
# 計算關鍵字匹配分數
matches = sum(1 for keyword in keywords if keyword in breed_text)
base_score = min(0.95, 0.3 + (matches / len(keywords)) * 0.6)
# 應用增強匹配邏輯
enhanced_score = _calculate_enhanced_matching_score(
breed, breed_info, user_description, base_score
)
breed_scores.append((breed, enhanced_score['final_score'], breed_info, enhanced_score))
# 按分數排序
breed_scores.sort(key=lambda x: x[1], reverse=True)
recommendations = []
for i, (breed, final_score, breed_info, enhanced_score) in enumerate(breed_scores[:top_k]):
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1,
'overall_score': final_score,
'final_score': final_score,
'semantic_score': enhanced_score.get('weighted_score', final_score),
'comparative_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
'lifestyle_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', 'Unknown'),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Unknown'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', 'No description available'),
'search_type': 'description',
'scores': enhanced_score.get('dimension_scores', {
'space': final_score * 0.9,
'exercise': final_score * 0.85,
'grooming': final_score * 0.8,
'experience': final_score * 0.75,
'noise': final_score * 0.7,
'family': final_score * 0.65
})
}
recommendations.append(recommendation)
return recommendations
except Exception as e:
error_msg = f"Error in basic text matching: {str(e)}"
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg) from e
|