Spaces:
Sleeping
Sleeping
Commit
·
6197f1f
1
Parent(s):
845eb37
Upload 4 files
Browse files- ModelClass.py +28 -19
- app.py +4 -3
- model_weights.pth +3 -0
ModelClass.py
CHANGED
|
@@ -3,22 +3,25 @@ from torch import nn
|
|
| 3 |
from torchvision import transforms, models
|
| 4 |
|
| 5 |
class ActionClassifier(nn.Module):
|
| 6 |
-
def __init__(self, ntargets):
|
| 7 |
super().__init__()
|
| 8 |
-
resnet = models.resnet50(
|
| 9 |
modules = list(resnet.children())[:-1] # delete last layer
|
|
|
|
| 10 |
self.resnet = nn.Sequential(*modules)
|
| 11 |
-
for param in self.resnet.parameters():
|
| 12 |
param.requires_grad = False
|
|
|
|
| 13 |
self.fc = nn.Sequential(
|
| 14 |
nn.Flatten(),
|
| 15 |
nn.BatchNorm1d(resnet.fc.in_features),
|
| 16 |
-
nn.Dropout(
|
| 17 |
-
nn.Linear(resnet.fc.in_features,
|
| 18 |
nn.ReLU(),
|
| 19 |
-
nn.BatchNorm1d(
|
| 20 |
-
nn.Dropout(
|
| 21 |
-
nn.Linear(
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
def forward(self, x):
|
|
@@ -27,22 +30,28 @@ class ActionClassifier(nn.Module):
|
|
| 27 |
return x
|
| 28 |
|
| 29 |
|
| 30 |
-
|
| 31 |
def get_transform():
|
| 32 |
-
transform = transforms.Compose([
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# to img of [0, 1]
|
| 37 |
-
transforms.Normalize((0.485, 0.456, 0.406),
|
| 38 |
-
(0.229*255, 0.224*255, 0.225*255))]
|
| 39 |
-
)
|
| 40 |
return transform
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def get_model():
|
| 44 |
-
model = ActionClassifier(15)
|
| 45 |
-
model.load_state_dict(torch.load('./
|
| 46 |
return model
|
| 47 |
|
| 48 |
|
|
|
|
| 3 |
from torchvision import transforms, models
|
| 4 |
|
| 5 |
class ActionClassifier(nn.Module):
|
| 6 |
+
def __init__(self, train_last_nlayer, hidden_size, dropout, ntargets):
|
| 7 |
super().__init__()
|
| 8 |
+
resnet = models.resnet50(weights=models.ResNet50_Weights.DEFAULT, progress=True)
|
| 9 |
modules = list(resnet.children())[:-1] # delete last layer
|
| 10 |
+
|
| 11 |
self.resnet = nn.Sequential(*modules)
|
| 12 |
+
for param in self.resnet[:-train_last_nlayer].parameters():
|
| 13 |
param.requires_grad = False
|
| 14 |
+
|
| 15 |
self.fc = nn.Sequential(
|
| 16 |
nn.Flatten(),
|
| 17 |
nn.BatchNorm1d(resnet.fc.in_features),
|
| 18 |
+
nn.Dropout(dropout),
|
| 19 |
+
nn.Linear(resnet.fc.in_features, hidden_size),
|
| 20 |
nn.ReLU(),
|
| 21 |
+
nn.BatchNorm1d(hidden_size),
|
| 22 |
+
nn.Dropout(dropout),
|
| 23 |
+
nn.Linear(hidden_size, ntargets),
|
| 24 |
+
nn.Sigmoid()
|
| 25 |
)
|
| 26 |
|
| 27 |
def forward(self, x):
|
|
|
|
| 30 |
return x
|
| 31 |
|
| 32 |
|
|
|
|
| 33 |
def get_transform():
|
| 34 |
+
transform = transforms.Compose([
|
| 35 |
+
transforms.Resize([224, 244]),
|
| 36 |
+
models.ResNet50_Weights.DEFAULT.transforms()
|
| 37 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
return transform
|
| 39 |
|
| 40 |
+
# def get_transform():
|
| 41 |
+
# transform = transforms.Compose([
|
| 42 |
+
# transforms.Resize([224, 244]),
|
| 43 |
+
# transforms.ToTensor(),
|
| 44 |
+
# # std multiply by 255 to convert img of [0, 255]
|
| 45 |
+
# # to img of [0, 1]
|
| 46 |
+
# transforms.Normalize((0.485, 0.456, 0.406),
|
| 47 |
+
# (0.229*255, 0.224*255, 0.225*255))]
|
| 48 |
+
# )
|
| 49 |
+
# return transform
|
| 50 |
+
|
| 51 |
|
| 52 |
def get_model():
|
| 53 |
+
model = ActionClassifier(0, 512, 0.2, 15)
|
| 54 |
+
model.load_state_dict(torch.load('./model_weights.pth', map_location=torch.device('cpu')))
|
| 55 |
return model
|
| 56 |
|
| 57 |
|
app.py
CHANGED
|
@@ -35,7 +35,7 @@ def infer(img):
|
|
| 35 |
|
| 36 |
|
| 37 |
st.set_page_config(
|
| 38 |
-
page_title="
|
| 39 |
page_icon="🧊",
|
| 40 |
layout="centered",
|
| 41 |
initial_sidebar_state="expanded",
|
|
@@ -86,7 +86,7 @@ hide_st_style = """
|
|
| 86 |
header {visibility: hidden;}
|
| 87 |
</style>
|
| 88 |
"""
|
| 89 |
-
|
| 90 |
|
| 91 |
|
| 92 |
|
|
@@ -129,10 +129,11 @@ def app():
|
|
| 129 |
|
| 130 |
res = infer(image)
|
| 131 |
prob = res.numpy()
|
| 132 |
-
idx = np.argpartition(prob, -
|
| 133 |
right_column.markdown('#### Results')
|
| 134 |
|
| 135 |
idx = list(idx)
|
|
|
|
| 136 |
for i in idx:
|
| 137 |
|
| 138 |
class_name = ModelClass.get_class(i).replace('_', ' ').capitalize()
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
st.set_page_config(
|
| 38 |
+
page_title="ActionNet",
|
| 39 |
page_icon="🧊",
|
| 40 |
layout="centered",
|
| 41 |
initial_sidebar_state="expanded",
|
|
|
|
| 86 |
header {visibility: hidden;}
|
| 87 |
</style>
|
| 88 |
"""
|
| 89 |
+
st.markdown(hide_st_style, unsafe_allow_html=True)
|
| 90 |
|
| 91 |
|
| 92 |
|
|
|
|
| 129 |
|
| 130 |
res = infer(image)
|
| 131 |
prob = res.numpy()
|
| 132 |
+
idx = np.argpartition(prob, -6)[-6:]
|
| 133 |
right_column.markdown('#### Results')
|
| 134 |
|
| 135 |
idx = list(idx)
|
| 136 |
+
idx.sort(key=lambda x: prob[x].astype(float), reverse=True)
|
| 137 |
for i in idx:
|
| 138 |
|
| 139 |
class_name = ModelClass.get_class(i).replace('_', ' ').capitalize()
|
model_weights.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d300834d5794b294533827f8f7200c7f5fa29fb984fa17075ae0b87b8e4c7e6
|
| 3 |
+
size 98624253
|