import json import os import shutil import requests import gradio as gr from huggingface_hub import Repository, InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN", None) API_URL = "https://api-inference.huggingface.co/models/DataAnalyticsLab/PersianGPT-FT-Grover" BOT_NAME = "PersianGPT-FT" STOP_SEQUENCES = ["<|endoftext|>"] EXAMPLES = [ ["<$غزل$@بر لبم هر ذره داغی می توان کردن"], ["<$غزل$"], ["<$قصیده$"], ["<$مثنوی$"], ["<$غزل$@دراین سرای بی کسی، کسی به در نمی زند"] ] client = InferenceClient( API_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, ) def format_prompt(message, history, system_prompt): prompt = "" if system_prompt: prompt += f"{system_prompt}" for user_prompt, bot_response in history: prompt += f"{user_prompt}" prompt += f"{bot_response}" prompt += f"""{message}""" return prompt def generate( prompt, history, system_prompt="<|endoftext|>", temperature=0.9, max_new_tokens=100, top_p=0.95, repetition_penalty=1.0, seed=42, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stop_sequences=STOP_SEQUENCES, do_sample=True, #seed=seed, ) #seed = seed + 1 formatted_prompt = format_prompt(prompt, history, system_prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False) output = "" for response in stream: output += response for stop_str in STOP_SEQUENCES: if output.endswith(stop_str): output = output[:-len(stop_str)] output = output.rstrip() yield output yield output return output additional_inputs=[ gr.Textbox("", label="Optional system prompt"), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=100, minimum=0, maximum=250, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown( """ PERSIAN GPT Trained by Mojtaba Valipour @ Data Analytics Lab """ ) gr.ChatInterface( generate, examples=EXAMPLES, additional_inputs=additional_inputs, ) demo.queue(concurrency_count=100, api_open=False).launch(show_api=False)