Sorvad-Dev / app.py
vpcom's picture
fix: response is str already
50f1d7b
raw
history blame
3.35 kB
import json
import os
import shutil
import requests
import gradio as gr
from huggingface_hub import Repository, InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = "https://api-inference.huggingface.co/models/DataAnalyticsLab/PersianGPT-FT-Grover"
BOT_NAME = "PersianGPT-FT"
STOP_SEQUENCES = ["<|endoftext|>"]
EXAMPLES = [
["<$غزل$@بر لبم هر ذره داغی می توان کردن"],
["<$غزل$"],
["<$قصیده$"],
["<$مثنوی$"],
["<$غزل$@دراین سرای بی کسی، کسی به در نمی زند"]
]
client = InferenceClient(
API_URL,
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
def format_prompt(message, history, system_prompt):
prompt = ""
if system_prompt:
prompt += f"{system_prompt}"
for user_prompt, bot_response in history:
prompt += f"{user_prompt}"
prompt += f"{bot_response}"
prompt += f"""{message}"""
return prompt
def generate(
prompt, history, system_prompt="<|endoftext|>", temperature=0.9, max_new_tokens=100, top_p=0.95, repetition_penalty=1.0, seed=42,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
stop_sequences=STOP_SEQUENCES,
do_sample=True,
#seed=seed,
)
#seed = seed + 1
formatted_prompt = format_prompt(prompt, history, system_prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False)
output = ""
for response in stream:
output += response
for stop_str in STOP_SEQUENCES:
if output.endswith(stop_str):
output = output[:-len(stop_str)]
output = output.rstrip()
yield output
yield output
return output
additional_inputs=[
gr.Textbox("", label="Optional system prompt"),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=100,
minimum=0,
maximum=250,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"""
PERSIAN GPT Trained by Mojtaba Valipour @ Data Analytics Lab
"""
)
gr.ChatInterface(
generate,
examples=EXAMPLES,
additional_inputs=additional_inputs,
)
demo.queue(concurrency_count=100, api_open=False).launch(show_api=False)