Spaces:
Sleeping
Sleeping
Commit
·
42b7ac6
1
Parent(s):
9685f7b
update content with the text model from Thomas repository https://huggingface.co/spaces/tombou/frugal-ai-challenge
Browse files- .gitignore +6 -1
- README.md +24 -11
- config_evaluation_distilBERT.json +5 -0
- config_evaluation_embeddingML.json +4 -0
- config_training.json +8 -0
- config_training_embedding_test.json +4 -0
- config_training_test.json +8 -0
- main.py +70 -0
- notebooks/template-audio.ipynb +1351 -0
- notebooks/template-image.ipynb +416 -0
- notebooks/template-text.ipynb +1642 -0
- requirements.txt +5 -1
- tasks/audio.py +3 -2
- tasks/data/__init__.py +0 -0
- tasks/data/data_loaders.py +51 -0
- tasks/image.py +9 -4
- tasks/models/__init__.py +0 -0
- tasks/models/pretrained_models/2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased/config.json +43 -0
- tasks/models/pretrained_models/2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased/config_training.json +8 -0
- tasks/models/pretrained_models/2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased/tf_model.h5 +3 -0
- tasks/models/text_classifiers.py +390 -0
- tasks/text.py +54 -46
- tasks/utils/emissions.py +3 -3
- test_text_classifiers.py +104 -0
.gitignore
CHANGED
@@ -5,7 +5,6 @@ venv/
|
|
5 |
__pycache__/
|
6 |
.env
|
7 |
.ipynb_checkpoints
|
8 |
-
*ipynb
|
9 |
.vscode/
|
10 |
|
11 |
eval-queue/
|
@@ -15,3 +14,9 @@ eval-results-bk/
|
|
15 |
logs/
|
16 |
|
17 |
emissions.csv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
__pycache__/
|
6 |
.env
|
7 |
.ipynb_checkpoints
|
|
|
8 |
.vscode/
|
9 |
|
10 |
eval-queue/
|
|
|
14 |
logs/
|
15 |
|
16 |
emissions.csv
|
17 |
+
|
18 |
+
# PyCharm
|
19 |
+
.idea/*
|
20 |
+
|
21 |
+
# sandbox folder: contains draft files
|
22 |
+
sandbox/
|
README.md
CHANGED
@@ -1,28 +1,41 @@
|
|
1 |
---
|
2 |
-
title: Submission
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
##
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
-
|
21 |
-
- **Out-of-scope use cases**: Not intended for production use or real-world classification tasks
|
22 |
|
23 |
## Training Data
|
24 |
|
25 |
-
The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
|
26 |
- Size: ~6000 examples
|
27 |
- Split: 80% train, 20% test
|
28 |
- 8 categories of climate disinformation claims
|
|
|
1 |
---
|
2 |
+
title: Frugal AI Challenge Submission
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
|
11 |
+
# Models for Climate Disinformation Classification
|
12 |
|
13 |
+
## Evaluate locally
|
14 |
|
15 |
+
To evaluate the model locally, you can use the following command:
|
16 |
|
17 |
+
```bash
|
18 |
+
python main.py --config config_evaluation_{model_name}.json
|
19 |
+
```
|
20 |
+
|
21 |
+
where `{model_name}` is either `distilBERT` or `embeddingML`.
|
22 |
+
|
23 |
+
|
24 |
+
## Models Description
|
25 |
+
|
26 |
+
### DistilBERT Model
|
27 |
+
|
28 |
+
The model uses the `distilbert-base-uncased` model from the Hugging Face Transformers library, fine-tuned on the
|
29 |
+
training dataset (see below).
|
30 |
+
|
31 |
+
### Embedding + ML Model
|
32 |
|
33 |
+
The model uses a simple embedding layer followed by a classic ML model. Currently, the embedding layer is a simple
|
34 |
+
TF-IDF vectorizer, and the ML model is a logistic regression.
|
|
|
35 |
|
36 |
## Training Data
|
37 |
|
38 |
+
The model uses the [`QuotaClimat/frugalaichallenge-text-train`](https://huggingface.co/datasets/QuotaClimat/frugalaichallenge-text-train) dataset:
|
39 |
- Size: ~6000 examples
|
40 |
- Split: 80% train, 20% test
|
41 |
- 8 categories of climate disinformation claims
|
config_evaluation_distilBERT.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "evaluate",
|
3 |
+
"model_type": "distilbert-pretrained",
|
4 |
+
"model_name": "2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased"
|
5 |
+
}
|
config_evaluation_embeddingML.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "evaluate",
|
3 |
+
"model_type": "embeddingML"
|
4 |
+
}
|
config_training.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "train",
|
3 |
+
"model_type": "distilbert",
|
4 |
+
"model_name": "distilbert-base-uncased",
|
5 |
+
"batch_size": 16,
|
6 |
+
"num_epochs": 5,
|
7 |
+
"initial_learning_rate": 2e-5
|
8 |
+
}
|
config_training_embedding_test.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "train",
|
3 |
+
"model_type": "embeddingML"
|
4 |
+
}
|
config_training_test.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "train",
|
3 |
+
"model_type": "distilbert",
|
4 |
+
"model_name": "distilbert-base-uncased",
|
5 |
+
"batch_size": 1,
|
6 |
+
"num_epochs": 1,
|
7 |
+
"initial_learning_rate": 2e-5
|
8 |
+
}
|
main.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import argparse
|
3 |
+
import asyncio
|
4 |
+
|
5 |
+
from tasks.data.data_loaders import TextDataLoader
|
6 |
+
from tasks.models.text_classifiers import ModelFactory
|
7 |
+
from tasks.text import evaluate_text
|
8 |
+
from tasks.utils.evaluation import TextEvaluationRequest
|
9 |
+
|
10 |
+
def load_config(config_path):
|
11 |
+
with open(config_path, 'r') as config_file:
|
12 |
+
config = json.load(config_file)
|
13 |
+
return config
|
14 |
+
|
15 |
+
async def train_model(config):
|
16 |
+
# loading data
|
17 |
+
text_request = TextEvaluationRequest()
|
18 |
+
is_light_dataset = False
|
19 |
+
data_loader = TextDataLoader(text_request, light=is_light_dataset)
|
20 |
+
|
21 |
+
# define model
|
22 |
+
model = ModelFactory.create_model(config)
|
23 |
+
|
24 |
+
# train model
|
25 |
+
train_dataset = data_loader.get_train_dataset()
|
26 |
+
if model.model is None:
|
27 |
+
model.train(train_dataset)
|
28 |
+
model.save()
|
29 |
+
print("Model training completed and saved.")
|
30 |
+
|
31 |
+
async def evaluate_model(config):
|
32 |
+
# loading data
|
33 |
+
text_request = TextEvaluationRequest()
|
34 |
+
data_loader = TextDataLoader(text_request)
|
35 |
+
|
36 |
+
# define model
|
37 |
+
model = ModelFactory.create_model(config)
|
38 |
+
|
39 |
+
# Call the evaluate_text function
|
40 |
+
results = await evaluate_text(request=text_request, model=model)
|
41 |
+
|
42 |
+
# Print the results
|
43 |
+
print(json.dumps(results, indent=2))
|
44 |
+
print(f"Achieved accuracy: {results['accuracy']}")
|
45 |
+
print(f"Energy consumed: {results['energy_consumed_wh']} Wh")
|
46 |
+
|
47 |
+
async def main():
|
48 |
+
# Parse command-line arguments
|
49 |
+
parser = argparse.ArgumentParser(description="Train or evaluate the model.")
|
50 |
+
parser.add_argument("--config", type=str, default="config.json", help="Path to the configuration file")
|
51 |
+
args = parser.parse_args()
|
52 |
+
|
53 |
+
# Load configuration
|
54 |
+
config_path = args.config
|
55 |
+
config = load_config(config_path)
|
56 |
+
|
57 |
+
try:
|
58 |
+
mode = config["mode"]
|
59 |
+
except ValueError:
|
60 |
+
raise ValueError(f"Missing mode in configuration file: {config_path}")
|
61 |
+
|
62 |
+
if mode == "train":
|
63 |
+
await train_model(config)
|
64 |
+
elif mode == "evaluate":
|
65 |
+
await evaluate_model(config)
|
66 |
+
else:
|
67 |
+
raise ValueError(f"Invalid mode in file '{config_path}': '{mode}'")
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
asyncio.run(main())
|
notebooks/template-audio.ipynb
ADDED
@@ -0,0 +1,1351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Text task notebook template\n",
|
8 |
+
"## Loading the necessary libraries"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 3,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [
|
16 |
+
{
|
17 |
+
"name": "stderr",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"[codecarbon WARNING @ 19:48:07] Multiple instances of codecarbon are allowed to run at the same time.\n",
|
21 |
+
"[codecarbon INFO @ 19:48:07] [setup] RAM Tracking...\n",
|
22 |
+
"[codecarbon INFO @ 19:48:07] [setup] CPU Tracking...\n",
|
23 |
+
"[codecarbon WARNING @ 19:48:09] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
24 |
+
"[codecarbon WARNING @ 19:48:09] No CPU tracking mode found. Falling back on CPU constant mode. \n",
|
25 |
+
" Windows OS detected: Please install Intel Power Gadget to measure CPU\n",
|
26 |
+
"\n",
|
27 |
+
"[codecarbon WARNING @ 19:48:11] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
28 |
+
"[codecarbon INFO @ 19:48:11] CPU Model on constant consumption mode: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
29 |
+
"[codecarbon WARNING @ 19:48:11] No CPU tracking mode found. Falling back on CPU constant mode.\n",
|
30 |
+
"[codecarbon INFO @ 19:48:11] [setup] GPU Tracking...\n",
|
31 |
+
"[codecarbon INFO @ 19:48:11] No GPU found.\n",
|
32 |
+
"[codecarbon INFO @ 19:48:11] >>> Tracker's metadata:\n",
|
33 |
+
"[codecarbon INFO @ 19:48:11] Platform system: Windows-11-10.0.22631-SP0\n",
|
34 |
+
"[codecarbon INFO @ 19:48:11] Python version: 3.12.7\n",
|
35 |
+
"[codecarbon INFO @ 19:48:11] CodeCarbon version: 3.0.0_rc0\n",
|
36 |
+
"[codecarbon INFO @ 19:48:11] Available RAM : 31.347 GB\n",
|
37 |
+
"[codecarbon INFO @ 19:48:11] CPU count: 12\n",
|
38 |
+
"[codecarbon INFO @ 19:48:11] CPU model: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
39 |
+
"[codecarbon INFO @ 19:48:11] GPU count: None\n",
|
40 |
+
"[codecarbon INFO @ 19:48:11] GPU model: None\n",
|
41 |
+
"[codecarbon INFO @ 19:48:11] Saving emissions data to file c:\\git\\submission-template\\notebooks\\emissions.csv\n"
|
42 |
+
]
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"from fastapi import APIRouter\n",
|
47 |
+
"from datetime import datetime\n",
|
48 |
+
"from datasets import load_dataset\n",
|
49 |
+
"from sklearn.metrics import accuracy_score\n",
|
50 |
+
"import random\n",
|
51 |
+
"\n",
|
52 |
+
"import sys\n",
|
53 |
+
"sys.path.append('../tasks')\n",
|
54 |
+
"\n",
|
55 |
+
"from utils.evaluation import AudioEvaluationRequest\n",
|
56 |
+
"from utils.emissions import tracker, clean_emissions_data, get_space_info\n",
|
57 |
+
"\n",
|
58 |
+
"\n",
|
59 |
+
"# Define the label mapping\n",
|
60 |
+
"LABEL_MAPPING = {\n",
|
61 |
+
" \"chainsaw\": 0,\n",
|
62 |
+
" \"environment\": 1\n",
|
63 |
+
"}"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "markdown",
|
68 |
+
"metadata": {},
|
69 |
+
"source": [
|
70 |
+
"## Loading the datasets and splitting them"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 4,
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [
|
78 |
+
{
|
79 |
+
"data": {
|
80 |
+
"application/vnd.jupyter.widget-view+json": {
|
81 |
+
"model_id": "668da7bf85434e098b95c3ec447d78fe",
|
82 |
+
"version_major": 2,
|
83 |
+
"version_minor": 0
|
84 |
+
},
|
85 |
+
"text/plain": [
|
86 |
+
"README.md: 0%| | 0.00/5.18k [00:00<?, ?B/s]"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "display_data"
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"name": "stderr",
|
94 |
+
"output_type": "stream",
|
95 |
+
"text": [
|
96 |
+
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\datasets--QuotaClimat--frugalaichallenge-text-train. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
97 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
98 |
+
" warnings.warn(message)\n"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"data": {
|
103 |
+
"application/vnd.jupyter.widget-view+json": {
|
104 |
+
"model_id": "5b68d43359eb429395da8be7d4b15556",
|
105 |
+
"version_major": 2,
|
106 |
+
"version_minor": 0
|
107 |
+
},
|
108 |
+
"text/plain": [
|
109 |
+
"train.parquet: 0%| | 0.00/1.21M [00:00<?, ?B/s]"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"metadata": {},
|
113 |
+
"output_type": "display_data"
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"data": {
|
117 |
+
"application/vnd.jupyter.widget-view+json": {
|
118 |
+
"model_id": "140a304773914e9db8f698eabeb40298",
|
119 |
+
"version_major": 2,
|
120 |
+
"version_minor": 0
|
121 |
+
},
|
122 |
+
"text/plain": [
|
123 |
+
"Generating train split: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
"metadata": {},
|
127 |
+
"output_type": "display_data"
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"data": {
|
131 |
+
"application/vnd.jupyter.widget-view+json": {
|
132 |
+
"model_id": "6d04e8ab1906400e8e0029949dc523a5",
|
133 |
+
"version_major": 2,
|
134 |
+
"version_minor": 0
|
135 |
+
},
|
136 |
+
"text/plain": [
|
137 |
+
"Map: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
"metadata": {},
|
141 |
+
"output_type": "display_data"
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"source": [
|
145 |
+
"request = AudioEvaluationRequest()\n",
|
146 |
+
"\n",
|
147 |
+
"# Load and prepare the dataset\n",
|
148 |
+
"dataset = load_dataset(request.dataset_name)\n",
|
149 |
+
"\n",
|
150 |
+
"# Split dataset\n",
|
151 |
+
"train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
|
152 |
+
"test_dataset = train_test[\"test\"]"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "markdown",
|
157 |
+
"metadata": {},
|
158 |
+
"source": [
|
159 |
+
"## Random Baseline"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 5,
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"# Start tracking emissions\n",
|
169 |
+
"tracker.start()\n",
|
170 |
+
"tracker.start_task(\"inference\")"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 6,
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [
|
178 |
+
{
|
179 |
+
"data": {
|
180 |
+
"text/plain": [
|
181 |
+
"[1,\n",
|
182 |
+
" 7,\n",
|
183 |
+
" 6,\n",
|
184 |
+
" 6,\n",
|
185 |
+
" 2,\n",
|
186 |
+
" 0,\n",
|
187 |
+
" 1,\n",
|
188 |
+
" 7,\n",
|
189 |
+
" 3,\n",
|
190 |
+
" 6,\n",
|
191 |
+
" 6,\n",
|
192 |
+
" 3,\n",
|
193 |
+
" 6,\n",
|
194 |
+
" 6,\n",
|
195 |
+
" 5,\n",
|
196 |
+
" 0,\n",
|
197 |
+
" 2,\n",
|
198 |
+
" 6,\n",
|
199 |
+
" 2,\n",
|
200 |
+
" 6,\n",
|
201 |
+
" 5,\n",
|
202 |
+
" 4,\n",
|
203 |
+
" 1,\n",
|
204 |
+
" 3,\n",
|
205 |
+
" 6,\n",
|
206 |
+
" 4,\n",
|
207 |
+
" 2,\n",
|
208 |
+
" 1,\n",
|
209 |
+
" 4,\n",
|
210 |
+
" 0,\n",
|
211 |
+
" 3,\n",
|
212 |
+
" 4,\n",
|
213 |
+
" 1,\n",
|
214 |
+
" 5,\n",
|
215 |
+
" 5,\n",
|
216 |
+
" 1,\n",
|
217 |
+
" 2,\n",
|
218 |
+
" 7,\n",
|
219 |
+
" 6,\n",
|
220 |
+
" 1,\n",
|
221 |
+
" 3,\n",
|
222 |
+
" 1,\n",
|
223 |
+
" 7,\n",
|
224 |
+
" 7,\n",
|
225 |
+
" 0,\n",
|
226 |
+
" 0,\n",
|
227 |
+
" 3,\n",
|
228 |
+
" 3,\n",
|
229 |
+
" 3,\n",
|
230 |
+
" 4,\n",
|
231 |
+
" 1,\n",
|
232 |
+
" 4,\n",
|
233 |
+
" 4,\n",
|
234 |
+
" 1,\n",
|
235 |
+
" 4,\n",
|
236 |
+
" 5,\n",
|
237 |
+
" 6,\n",
|
238 |
+
" 1,\n",
|
239 |
+
" 2,\n",
|
240 |
+
" 2,\n",
|
241 |
+
" 2,\n",
|
242 |
+
" 5,\n",
|
243 |
+
" 2,\n",
|
244 |
+
" 7,\n",
|
245 |
+
" 2,\n",
|
246 |
+
" 7,\n",
|
247 |
+
" 7,\n",
|
248 |
+
" 6,\n",
|
249 |
+
" 4,\n",
|
250 |
+
" 2,\n",
|
251 |
+
" 0,\n",
|
252 |
+
" 1,\n",
|
253 |
+
" 6,\n",
|
254 |
+
" 3,\n",
|
255 |
+
" 2,\n",
|
256 |
+
" 5,\n",
|
257 |
+
" 5,\n",
|
258 |
+
" 2,\n",
|
259 |
+
" 0,\n",
|
260 |
+
" 7,\n",
|
261 |
+
" 0,\n",
|
262 |
+
" 1,\n",
|
263 |
+
" 5,\n",
|
264 |
+
" 5,\n",
|
265 |
+
" 7,\n",
|
266 |
+
" 4,\n",
|
267 |
+
" 6,\n",
|
268 |
+
" 7,\n",
|
269 |
+
" 1,\n",
|
270 |
+
" 7,\n",
|
271 |
+
" 1,\n",
|
272 |
+
" 0,\n",
|
273 |
+
" 3,\n",
|
274 |
+
" 4,\n",
|
275 |
+
" 2,\n",
|
276 |
+
" 5,\n",
|
277 |
+
" 3,\n",
|
278 |
+
" 3,\n",
|
279 |
+
" 3,\n",
|
280 |
+
" 2,\n",
|
281 |
+
" 2,\n",
|
282 |
+
" 1,\n",
|
283 |
+
" 0,\n",
|
284 |
+
" 4,\n",
|
285 |
+
" 5,\n",
|
286 |
+
" 7,\n",
|
287 |
+
" 0,\n",
|
288 |
+
" 3,\n",
|
289 |
+
" 1,\n",
|
290 |
+
" 4,\n",
|
291 |
+
" 6,\n",
|
292 |
+
" 0,\n",
|
293 |
+
" 7,\n",
|
294 |
+
" 1,\n",
|
295 |
+
" 1,\n",
|
296 |
+
" 2,\n",
|
297 |
+
" 2,\n",
|
298 |
+
" 4,\n",
|
299 |
+
" 0,\n",
|
300 |
+
" 4,\n",
|
301 |
+
" 3,\n",
|
302 |
+
" 4,\n",
|
303 |
+
" 4,\n",
|
304 |
+
" 2,\n",
|
305 |
+
" 2,\n",
|
306 |
+
" 3,\n",
|
307 |
+
" 3,\n",
|
308 |
+
" 7,\n",
|
309 |
+
" 4,\n",
|
310 |
+
" 7,\n",
|
311 |
+
" 6,\n",
|
312 |
+
" 4,\n",
|
313 |
+
" 5,\n",
|
314 |
+
" 4,\n",
|
315 |
+
" 3,\n",
|
316 |
+
" 6,\n",
|
317 |
+
" 0,\n",
|
318 |
+
" 4,\n",
|
319 |
+
" 0,\n",
|
320 |
+
" 1,\n",
|
321 |
+
" 3,\n",
|
322 |
+
" 6,\n",
|
323 |
+
" 7,\n",
|
324 |
+
" 3,\n",
|
325 |
+
" 3,\n",
|
326 |
+
" 0,\n",
|
327 |
+
" 1,\n",
|
328 |
+
" 2,\n",
|
329 |
+
" 4,\n",
|
330 |
+
" 4,\n",
|
331 |
+
" 3,\n",
|
332 |
+
" 1,\n",
|
333 |
+
" 2,\n",
|
334 |
+
" 4,\n",
|
335 |
+
" 3,\n",
|
336 |
+
" 0,\n",
|
337 |
+
" 5,\n",
|
338 |
+
" 3,\n",
|
339 |
+
" 6,\n",
|
340 |
+
" 3,\n",
|
341 |
+
" 6,\n",
|
342 |
+
" 1,\n",
|
343 |
+
" 3,\n",
|
344 |
+
" 4,\n",
|
345 |
+
" 5,\n",
|
346 |
+
" 4,\n",
|
347 |
+
" 0,\n",
|
348 |
+
" 7,\n",
|
349 |
+
" 3,\n",
|
350 |
+
" 6,\n",
|
351 |
+
" 7,\n",
|
352 |
+
" 4,\n",
|
353 |
+
" 4,\n",
|
354 |
+
" 5,\n",
|
355 |
+
" 3,\n",
|
356 |
+
" 1,\n",
|
357 |
+
" 7,\n",
|
358 |
+
" 4,\n",
|
359 |
+
" 1,\n",
|
360 |
+
" 0,\n",
|
361 |
+
" 3,\n",
|
362 |
+
" 0,\n",
|
363 |
+
" 5,\n",
|
364 |
+
" 3,\n",
|
365 |
+
" 6,\n",
|
366 |
+
" 3,\n",
|
367 |
+
" 0,\n",
|
368 |
+
" 7,\n",
|
369 |
+
" 2,\n",
|
370 |
+
" 0,\n",
|
371 |
+
" 4,\n",
|
372 |
+
" 1,\n",
|
373 |
+
" 2,\n",
|
374 |
+
" 6,\n",
|
375 |
+
" 3,\n",
|
376 |
+
" 4,\n",
|
377 |
+
" 4,\n",
|
378 |
+
" 5,\n",
|
379 |
+
" 1,\n",
|
380 |
+
" 5,\n",
|
381 |
+
" 4,\n",
|
382 |
+
" 0,\n",
|
383 |
+
" 1,\n",
|
384 |
+
" 7,\n",
|
385 |
+
" 3,\n",
|
386 |
+
" 6,\n",
|
387 |
+
" 0,\n",
|
388 |
+
" 7,\n",
|
389 |
+
" 4,\n",
|
390 |
+
" 6,\n",
|
391 |
+
" 3,\n",
|
392 |
+
" 0,\n",
|
393 |
+
" 0,\n",
|
394 |
+
" 4,\n",
|
395 |
+
" 6,\n",
|
396 |
+
" 6,\n",
|
397 |
+
" 4,\n",
|
398 |
+
" 0,\n",
|
399 |
+
" 5,\n",
|
400 |
+
" 7,\n",
|
401 |
+
" 5,\n",
|
402 |
+
" 1,\n",
|
403 |
+
" 3,\n",
|
404 |
+
" 6,\n",
|
405 |
+
" 2,\n",
|
406 |
+
" 3,\n",
|
407 |
+
" 2,\n",
|
408 |
+
" 4,\n",
|
409 |
+
" 5,\n",
|
410 |
+
" 1,\n",
|
411 |
+
" 5,\n",
|
412 |
+
" 0,\n",
|
413 |
+
" 3,\n",
|
414 |
+
" 3,\n",
|
415 |
+
" 0,\n",
|
416 |
+
" 0,\n",
|
417 |
+
" 6,\n",
|
418 |
+
" 6,\n",
|
419 |
+
" 2,\n",
|
420 |
+
" 0,\n",
|
421 |
+
" 7,\n",
|
422 |
+
" 4,\n",
|
423 |
+
" 5,\n",
|
424 |
+
" 7,\n",
|
425 |
+
" 1,\n",
|
426 |
+
" 0,\n",
|
427 |
+
" 4,\n",
|
428 |
+
" 5,\n",
|
429 |
+
" 1,\n",
|
430 |
+
" 7,\n",
|
431 |
+
" 0,\n",
|
432 |
+
" 7,\n",
|
433 |
+
" 2,\n",
|
434 |
+
" 6,\n",
|
435 |
+
" 1,\n",
|
436 |
+
" 3,\n",
|
437 |
+
" 5,\n",
|
438 |
+
" 5,\n",
|
439 |
+
" 6,\n",
|
440 |
+
" 5,\n",
|
441 |
+
" 4,\n",
|
442 |
+
" 3,\n",
|
443 |
+
" 7,\n",
|
444 |
+
" 4,\n",
|
445 |
+
" 3,\n",
|
446 |
+
" 5,\n",
|
447 |
+
" 5,\n",
|
448 |
+
" 7,\n",
|
449 |
+
" 2,\n",
|
450 |
+
" 6,\n",
|
451 |
+
" 1,\n",
|
452 |
+
" 5,\n",
|
453 |
+
" 0,\n",
|
454 |
+
" 3,\n",
|
455 |
+
" 4,\n",
|
456 |
+
" 2,\n",
|
457 |
+
" 3,\n",
|
458 |
+
" 7,\n",
|
459 |
+
" 0,\n",
|
460 |
+
" 1,\n",
|
461 |
+
" 7,\n",
|
462 |
+
" 6,\n",
|
463 |
+
" 7,\n",
|
464 |
+
" 7,\n",
|
465 |
+
" 5,\n",
|
466 |
+
" 6,\n",
|
467 |
+
" 3,\n",
|
468 |
+
" 2,\n",
|
469 |
+
" 3,\n",
|
470 |
+
" 0,\n",
|
471 |
+
" 4,\n",
|
472 |
+
" 3,\n",
|
473 |
+
" 5,\n",
|
474 |
+
" 6,\n",
|
475 |
+
" 0,\n",
|
476 |
+
" 0,\n",
|
477 |
+
" 6,\n",
|
478 |
+
" 6,\n",
|
479 |
+
" 1,\n",
|
480 |
+
" 4,\n",
|
481 |
+
" 0,\n",
|
482 |
+
" 4,\n",
|
483 |
+
" 2,\n",
|
484 |
+
" 7,\n",
|
485 |
+
" 5,\n",
|
486 |
+
" 7,\n",
|
487 |
+
" 6,\n",
|
488 |
+
" 3,\n",
|
489 |
+
" 5,\n",
|
490 |
+
" 6,\n",
|
491 |
+
" 0,\n",
|
492 |
+
" 4,\n",
|
493 |
+
" 5,\n",
|
494 |
+
" 6,\n",
|
495 |
+
" 1,\n",
|
496 |
+
" 2,\n",
|
497 |
+
" 1,\n",
|
498 |
+
" 5,\n",
|
499 |
+
" 3,\n",
|
500 |
+
" 0,\n",
|
501 |
+
" 3,\n",
|
502 |
+
" 7,\n",
|
503 |
+
" 1,\n",
|
504 |
+
" 0,\n",
|
505 |
+
" 7,\n",
|
506 |
+
" 0,\n",
|
507 |
+
" 1,\n",
|
508 |
+
" 0,\n",
|
509 |
+
" 4,\n",
|
510 |
+
" 1,\n",
|
511 |
+
" 1,\n",
|
512 |
+
" 0,\n",
|
513 |
+
" 7,\n",
|
514 |
+
" 1,\n",
|
515 |
+
" 0,\n",
|
516 |
+
" 7,\n",
|
517 |
+
" 6,\n",
|
518 |
+
" 2,\n",
|
519 |
+
" 3,\n",
|
520 |
+
" 7,\n",
|
521 |
+
" 4,\n",
|
522 |
+
" 3,\n",
|
523 |
+
" 4,\n",
|
524 |
+
" 3,\n",
|
525 |
+
" 3,\n",
|
526 |
+
" 2,\n",
|
527 |
+
" 5,\n",
|
528 |
+
" 1,\n",
|
529 |
+
" 5,\n",
|
530 |
+
" 1,\n",
|
531 |
+
" 7,\n",
|
532 |
+
" 3,\n",
|
533 |
+
" 2,\n",
|
534 |
+
" 6,\n",
|
535 |
+
" 4,\n",
|
536 |
+
" 4,\n",
|
537 |
+
" 1,\n",
|
538 |
+
" 2,\n",
|
539 |
+
" 6,\n",
|
540 |
+
" 7,\n",
|
541 |
+
" 2,\n",
|
542 |
+
" 7,\n",
|
543 |
+
" 1,\n",
|
544 |
+
" 3,\n",
|
545 |
+
" 5,\n",
|
546 |
+
" 2,\n",
|
547 |
+
" 6,\n",
|
548 |
+
" 4,\n",
|
549 |
+
" 6,\n",
|
550 |
+
" 7,\n",
|
551 |
+
" 0,\n",
|
552 |
+
" 5,\n",
|
553 |
+
" 1,\n",
|
554 |
+
" 6,\n",
|
555 |
+
" 5,\n",
|
556 |
+
" 3,\n",
|
557 |
+
" 6,\n",
|
558 |
+
" 5,\n",
|
559 |
+
" 4,\n",
|
560 |
+
" 7,\n",
|
561 |
+
" 6,\n",
|
562 |
+
" 5,\n",
|
563 |
+
" 4,\n",
|
564 |
+
" 3,\n",
|
565 |
+
" 0,\n",
|
566 |
+
" 0,\n",
|
567 |
+
" 1,\n",
|
568 |
+
" 7,\n",
|
569 |
+
" 7,\n",
|
570 |
+
" 6,\n",
|
571 |
+
" 1,\n",
|
572 |
+
" 4,\n",
|
573 |
+
" 5,\n",
|
574 |
+
" 6,\n",
|
575 |
+
" 1,\n",
|
576 |
+
" 5,\n",
|
577 |
+
" 1,\n",
|
578 |
+
" 2,\n",
|
579 |
+
" 6,\n",
|
580 |
+
" 2,\n",
|
581 |
+
" 6,\n",
|
582 |
+
" 0,\n",
|
583 |
+
" 2,\n",
|
584 |
+
" 1,\n",
|
585 |
+
" 5,\n",
|
586 |
+
" 5,\n",
|
587 |
+
" 1,\n",
|
588 |
+
" 7,\n",
|
589 |
+
" 0,\n",
|
590 |
+
" 5,\n",
|
591 |
+
" 5,\n",
|
592 |
+
" 1,\n",
|
593 |
+
" 7,\n",
|
594 |
+
" 7,\n",
|
595 |
+
" 2,\n",
|
596 |
+
" 1,\n",
|
597 |
+
" 0,\n",
|
598 |
+
" 1,\n",
|
599 |
+
" 0,\n",
|
600 |
+
" 5,\n",
|
601 |
+
" 4,\n",
|
602 |
+
" 2,\n",
|
603 |
+
" 7,\n",
|
604 |
+
" 4,\n",
|
605 |
+
" 3,\n",
|
606 |
+
" 6,\n",
|
607 |
+
" 7,\n",
|
608 |
+
" 5,\n",
|
609 |
+
" 1,\n",
|
610 |
+
" 0,\n",
|
611 |
+
" 7,\n",
|
612 |
+
" 2,\n",
|
613 |
+
" 1,\n",
|
614 |
+
" 2,\n",
|
615 |
+
" 3,\n",
|
616 |
+
" 1,\n",
|
617 |
+
" 0,\n",
|
618 |
+
" 3,\n",
|
619 |
+
" 2,\n",
|
620 |
+
" 6,\n",
|
621 |
+
" 0,\n",
|
622 |
+
" 5,\n",
|
623 |
+
" 4,\n",
|
624 |
+
" 7,\n",
|
625 |
+
" 1,\n",
|
626 |
+
" 1,\n",
|
627 |
+
" 0,\n",
|
628 |
+
" 7,\n",
|
629 |
+
" 0,\n",
|
630 |
+
" 6,\n",
|
631 |
+
" 7,\n",
|
632 |
+
" 6,\n",
|
633 |
+
" 1,\n",
|
634 |
+
" 5,\n",
|
635 |
+
" 5,\n",
|
636 |
+
" 7,\n",
|
637 |
+
" 6,\n",
|
638 |
+
" 1,\n",
|
639 |
+
" 7,\n",
|
640 |
+
" 6,\n",
|
641 |
+
" 5,\n",
|
642 |
+
" 4,\n",
|
643 |
+
" 1,\n",
|
644 |
+
" 4,\n",
|
645 |
+
" 7,\n",
|
646 |
+
" 5,\n",
|
647 |
+
" 4,\n",
|
648 |
+
" 0,\n",
|
649 |
+
" 0,\n",
|
650 |
+
" 7,\n",
|
651 |
+
" 0,\n",
|
652 |
+
" 0,\n",
|
653 |
+
" 3,\n",
|
654 |
+
" 6,\n",
|
655 |
+
" 2,\n",
|
656 |
+
" 5,\n",
|
657 |
+
" 3,\n",
|
658 |
+
" 0,\n",
|
659 |
+
" 3,\n",
|
660 |
+
" 6,\n",
|
661 |
+
" 5,\n",
|
662 |
+
" 7,\n",
|
663 |
+
" 2,\n",
|
664 |
+
" 6,\n",
|
665 |
+
" 7,\n",
|
666 |
+
" 5,\n",
|
667 |
+
" 2,\n",
|
668 |
+
" 3,\n",
|
669 |
+
" 6,\n",
|
670 |
+
" 7,\n",
|
671 |
+
" 7,\n",
|
672 |
+
" 7,\n",
|
673 |
+
" 6,\n",
|
674 |
+
" 1,\n",
|
675 |
+
" 7,\n",
|
676 |
+
" 4,\n",
|
677 |
+
" 2,\n",
|
678 |
+
" 7,\n",
|
679 |
+
" 5,\n",
|
680 |
+
" 4,\n",
|
681 |
+
" 1,\n",
|
682 |
+
" 2,\n",
|
683 |
+
" 3,\n",
|
684 |
+
" 7,\n",
|
685 |
+
" 0,\n",
|
686 |
+
" 2,\n",
|
687 |
+
" 7,\n",
|
688 |
+
" 6,\n",
|
689 |
+
" 1,\n",
|
690 |
+
" 4,\n",
|
691 |
+
" 0,\n",
|
692 |
+
" 6,\n",
|
693 |
+
" 3,\n",
|
694 |
+
" 1,\n",
|
695 |
+
" 0,\n",
|
696 |
+
" 3,\n",
|
697 |
+
" 4,\n",
|
698 |
+
" 7,\n",
|
699 |
+
" 7,\n",
|
700 |
+
" 4,\n",
|
701 |
+
" 2,\n",
|
702 |
+
" 1,\n",
|
703 |
+
" 0,\n",
|
704 |
+
" 5,\n",
|
705 |
+
" 1,\n",
|
706 |
+
" 7,\n",
|
707 |
+
" 4,\n",
|
708 |
+
" 6,\n",
|
709 |
+
" 7,\n",
|
710 |
+
" 7,\n",
|
711 |
+
" 3,\n",
|
712 |
+
" 4,\n",
|
713 |
+
" 3,\n",
|
714 |
+
" 5,\n",
|
715 |
+
" 4,\n",
|
716 |
+
" 4,\n",
|
717 |
+
" 5,\n",
|
718 |
+
" 0,\n",
|
719 |
+
" 1,\n",
|
720 |
+
" 3,\n",
|
721 |
+
" 7,\n",
|
722 |
+
" 5,\n",
|
723 |
+
" 4,\n",
|
724 |
+
" 7,\n",
|
725 |
+
" 3,\n",
|
726 |
+
" 3,\n",
|
727 |
+
" 3,\n",
|
728 |
+
" 5,\n",
|
729 |
+
" 3,\n",
|
730 |
+
" 3,\n",
|
731 |
+
" 4,\n",
|
732 |
+
" 0,\n",
|
733 |
+
" 1,\n",
|
734 |
+
" 7,\n",
|
735 |
+
" 4,\n",
|
736 |
+
" 7,\n",
|
737 |
+
" 7,\n",
|
738 |
+
" 5,\n",
|
739 |
+
" 0,\n",
|
740 |
+
" 0,\n",
|
741 |
+
" 5,\n",
|
742 |
+
" 2,\n",
|
743 |
+
" 6,\n",
|
744 |
+
" 2,\n",
|
745 |
+
" 6,\n",
|
746 |
+
" 7,\n",
|
747 |
+
" 6,\n",
|
748 |
+
" 5,\n",
|
749 |
+
" 7,\n",
|
750 |
+
" 5,\n",
|
751 |
+
" 7,\n",
|
752 |
+
" 1,\n",
|
753 |
+
" 6,\n",
|
754 |
+
" 6,\n",
|
755 |
+
" 0,\n",
|
756 |
+
" 4,\n",
|
757 |
+
" 7,\n",
|
758 |
+
" 3,\n",
|
759 |
+
" 0,\n",
|
760 |
+
" 0,\n",
|
761 |
+
" 2,\n",
|
762 |
+
" 5,\n",
|
763 |
+
" 2,\n",
|
764 |
+
" 3,\n",
|
765 |
+
" 7,\n",
|
766 |
+
" 1,\n",
|
767 |
+
" 0,\n",
|
768 |
+
" 3,\n",
|
769 |
+
" 0,\n",
|
770 |
+
" 0,\n",
|
771 |
+
" 3,\n",
|
772 |
+
" 3,\n",
|
773 |
+
" 7,\n",
|
774 |
+
" 3,\n",
|
775 |
+
" 0,\n",
|
776 |
+
" 1,\n",
|
777 |
+
" 1,\n",
|
778 |
+
" 6,\n",
|
779 |
+
" 0,\n",
|
780 |
+
" 0,\n",
|
781 |
+
" 5,\n",
|
782 |
+
" 0,\n",
|
783 |
+
" 3,\n",
|
784 |
+
" 4,\n",
|
785 |
+
" 6,\n",
|
786 |
+
" 7,\n",
|
787 |
+
" 4,\n",
|
788 |
+
" 0,\n",
|
789 |
+
" 4,\n",
|
790 |
+
" 4,\n",
|
791 |
+
" 5,\n",
|
792 |
+
" 4,\n",
|
793 |
+
" 4,\n",
|
794 |
+
" 3,\n",
|
795 |
+
" 6,\n",
|
796 |
+
" 5,\n",
|
797 |
+
" 2,\n",
|
798 |
+
" 0,\n",
|
799 |
+
" 6,\n",
|
800 |
+
" 0,\n",
|
801 |
+
" 6,\n",
|
802 |
+
" 4,\n",
|
803 |
+
" 3,\n",
|
804 |
+
" 5,\n",
|
805 |
+
" 7,\n",
|
806 |
+
" 7,\n",
|
807 |
+
" 5,\n",
|
808 |
+
" 5,\n",
|
809 |
+
" 1,\n",
|
810 |
+
" 5,\n",
|
811 |
+
" 2,\n",
|
812 |
+
" 7,\n",
|
813 |
+
" 7,\n",
|
814 |
+
" 6,\n",
|
815 |
+
" 6,\n",
|
816 |
+
" 7,\n",
|
817 |
+
" 6,\n",
|
818 |
+
" 5,\n",
|
819 |
+
" 2,\n",
|
820 |
+
" 4,\n",
|
821 |
+
" 0,\n",
|
822 |
+
" 4,\n",
|
823 |
+
" 4,\n",
|
824 |
+
" 7,\n",
|
825 |
+
" 5,\n",
|
826 |
+
" 2,\n",
|
827 |
+
" 7,\n",
|
828 |
+
" 0,\n",
|
829 |
+
" 6,\n",
|
830 |
+
" 0,\n",
|
831 |
+
" 2,\n",
|
832 |
+
" 6,\n",
|
833 |
+
" 6,\n",
|
834 |
+
" 2,\n",
|
835 |
+
" 3,\n",
|
836 |
+
" 0,\n",
|
837 |
+
" 5,\n",
|
838 |
+
" 0,\n",
|
839 |
+
" 5,\n",
|
840 |
+
" 7,\n",
|
841 |
+
" 2,\n",
|
842 |
+
" 7,\n",
|
843 |
+
" 4,\n",
|
844 |
+
" 7,\n",
|
845 |
+
" 4,\n",
|
846 |
+
" 0,\n",
|
847 |
+
" 7,\n",
|
848 |
+
" 1,\n",
|
849 |
+
" 4,\n",
|
850 |
+
" 5,\n",
|
851 |
+
" 0,\n",
|
852 |
+
" 5,\n",
|
853 |
+
" 5,\n",
|
854 |
+
" 2,\n",
|
855 |
+
" 0,\n",
|
856 |
+
" 2,\n",
|
857 |
+
" 5,\n",
|
858 |
+
" 5,\n",
|
859 |
+
" 6,\n",
|
860 |
+
" 3,\n",
|
861 |
+
" 4,\n",
|
862 |
+
" 1,\n",
|
863 |
+
" 7,\n",
|
864 |
+
" 7,\n",
|
865 |
+
" 2,\n",
|
866 |
+
" 3,\n",
|
867 |
+
" 2,\n",
|
868 |
+
" 5,\n",
|
869 |
+
" 0,\n",
|
870 |
+
" 7,\n",
|
871 |
+
" 2,\n",
|
872 |
+
" 3,\n",
|
873 |
+
" 7,\n",
|
874 |
+
" 2,\n",
|
875 |
+
" 4,\n",
|
876 |
+
" 0,\n",
|
877 |
+
" 5,\n",
|
878 |
+
" 7,\n",
|
879 |
+
" 3,\n",
|
880 |
+
" 6,\n",
|
881 |
+
" 7,\n",
|
882 |
+
" 6,\n",
|
883 |
+
" 4,\n",
|
884 |
+
" 3,\n",
|
885 |
+
" 6,\n",
|
886 |
+
" 5,\n",
|
887 |
+
" 4,\n",
|
888 |
+
" 0,\n",
|
889 |
+
" 3,\n",
|
890 |
+
" 4,\n",
|
891 |
+
" 3,\n",
|
892 |
+
" 5,\n",
|
893 |
+
" 2,\n",
|
894 |
+
" 4,\n",
|
895 |
+
" 0,\n",
|
896 |
+
" 3,\n",
|
897 |
+
" 6,\n",
|
898 |
+
" 1,\n",
|
899 |
+
" 3,\n",
|
900 |
+
" 1,\n",
|
901 |
+
" 4,\n",
|
902 |
+
" 3,\n",
|
903 |
+
" 3,\n",
|
904 |
+
" 3,\n",
|
905 |
+
" 0,\n",
|
906 |
+
" 7,\n",
|
907 |
+
" 6,\n",
|
908 |
+
" 2,\n",
|
909 |
+
" 4,\n",
|
910 |
+
" 6,\n",
|
911 |
+
" 5,\n",
|
912 |
+
" 4,\n",
|
913 |
+
" 1,\n",
|
914 |
+
" 7,\n",
|
915 |
+
" 6,\n",
|
916 |
+
" 1,\n",
|
917 |
+
" 4,\n",
|
918 |
+
" 3,\n",
|
919 |
+
" 0,\n",
|
920 |
+
" 7,\n",
|
921 |
+
" 3,\n",
|
922 |
+
" 1,\n",
|
923 |
+
" 2,\n",
|
924 |
+
" 1,\n",
|
925 |
+
" 6,\n",
|
926 |
+
" 4,\n",
|
927 |
+
" 7,\n",
|
928 |
+
" 1,\n",
|
929 |
+
" 7,\n",
|
930 |
+
" 1,\n",
|
931 |
+
" 5,\n",
|
932 |
+
" 1,\n",
|
933 |
+
" 6,\n",
|
934 |
+
" 3,\n",
|
935 |
+
" 0,\n",
|
936 |
+
" 2,\n",
|
937 |
+
" 6,\n",
|
938 |
+
" 7,\n",
|
939 |
+
" 7,\n",
|
940 |
+
" 0,\n",
|
941 |
+
" 1,\n",
|
942 |
+
" 4,\n",
|
943 |
+
" 0,\n",
|
944 |
+
" 4,\n",
|
945 |
+
" 5,\n",
|
946 |
+
" 3,\n",
|
947 |
+
" 6,\n",
|
948 |
+
" 2,\n",
|
949 |
+
" 3,\n",
|
950 |
+
" 4,\n",
|
951 |
+
" 1,\n",
|
952 |
+
" 6,\n",
|
953 |
+
" 2,\n",
|
954 |
+
" 4,\n",
|
955 |
+
" 4,\n",
|
956 |
+
" 6,\n",
|
957 |
+
" 4,\n",
|
958 |
+
" 5,\n",
|
959 |
+
" 7,\n",
|
960 |
+
" 1,\n",
|
961 |
+
" 7,\n",
|
962 |
+
" 7,\n",
|
963 |
+
" 4,\n",
|
964 |
+
" 7,\n",
|
965 |
+
" 4,\n",
|
966 |
+
" 3,\n",
|
967 |
+
" 3,\n",
|
968 |
+
" 6,\n",
|
969 |
+
" 1,\n",
|
970 |
+
" 2,\n",
|
971 |
+
" 0,\n",
|
972 |
+
" 0,\n",
|
973 |
+
" 0,\n",
|
974 |
+
" 2,\n",
|
975 |
+
" 5,\n",
|
976 |
+
" 6,\n",
|
977 |
+
" 5,\n",
|
978 |
+
" 7,\n",
|
979 |
+
" 5,\n",
|
980 |
+
" 7,\n",
|
981 |
+
" 1,\n",
|
982 |
+
" 1,\n",
|
983 |
+
" 2,\n",
|
984 |
+
" 1,\n",
|
985 |
+
" 6,\n",
|
986 |
+
" 5,\n",
|
987 |
+
" 7,\n",
|
988 |
+
" 0,\n",
|
989 |
+
" 0,\n",
|
990 |
+
" 5,\n",
|
991 |
+
" 5,\n",
|
992 |
+
" 0,\n",
|
993 |
+
" 3,\n",
|
994 |
+
" 7,\n",
|
995 |
+
" 5,\n",
|
996 |
+
" 2,\n",
|
997 |
+
" 5,\n",
|
998 |
+
" 4,\n",
|
999 |
+
" 2,\n",
|
1000 |
+
" 3,\n",
|
1001 |
+
" 6,\n",
|
1002 |
+
" 2,\n",
|
1003 |
+
" 3,\n",
|
1004 |
+
" 6,\n",
|
1005 |
+
" 0,\n",
|
1006 |
+
" 0,\n",
|
1007 |
+
" 2,\n",
|
1008 |
+
" 6,\n",
|
1009 |
+
" 0,\n",
|
1010 |
+
" 1,\n",
|
1011 |
+
" 3,\n",
|
1012 |
+
" 3,\n",
|
1013 |
+
" 6,\n",
|
1014 |
+
" 4,\n",
|
1015 |
+
" 6,\n",
|
1016 |
+
" 4,\n",
|
1017 |
+
" 6,\n",
|
1018 |
+
" 0,\n",
|
1019 |
+
" 0,\n",
|
1020 |
+
" 2,\n",
|
1021 |
+
" 3,\n",
|
1022 |
+
" 6,\n",
|
1023 |
+
" 2,\n",
|
1024 |
+
" 2,\n",
|
1025 |
+
" 6,\n",
|
1026 |
+
" 6,\n",
|
1027 |
+
" 2,\n",
|
1028 |
+
" 4,\n",
|
1029 |
+
" 3,\n",
|
1030 |
+
" 3,\n",
|
1031 |
+
" 6,\n",
|
1032 |
+
" 7,\n",
|
1033 |
+
" 7,\n",
|
1034 |
+
" 1,\n",
|
1035 |
+
" 1,\n",
|
1036 |
+
" 7,\n",
|
1037 |
+
" 7,\n",
|
1038 |
+
" 6,\n",
|
1039 |
+
" 1,\n",
|
1040 |
+
" 7,\n",
|
1041 |
+
" 0,\n",
|
1042 |
+
" 0,\n",
|
1043 |
+
" 2,\n",
|
1044 |
+
" 4,\n",
|
1045 |
+
" 2,\n",
|
1046 |
+
" 2,\n",
|
1047 |
+
" 3,\n",
|
1048 |
+
" 0,\n",
|
1049 |
+
" 1,\n",
|
1050 |
+
" 4,\n",
|
1051 |
+
" 0,\n",
|
1052 |
+
" 4,\n",
|
1053 |
+
" 6,\n",
|
1054 |
+
" 5,\n",
|
1055 |
+
" 3,\n",
|
1056 |
+
" 2,\n",
|
1057 |
+
" 3,\n",
|
1058 |
+
" 2,\n",
|
1059 |
+
" 3,\n",
|
1060 |
+
" 6,\n",
|
1061 |
+
" 2,\n",
|
1062 |
+
" 1,\n",
|
1063 |
+
" 4,\n",
|
1064 |
+
" 7,\n",
|
1065 |
+
" 6,\n",
|
1066 |
+
" 4,\n",
|
1067 |
+
" 5,\n",
|
1068 |
+
" 6,\n",
|
1069 |
+
" 7,\n",
|
1070 |
+
" 7,\n",
|
1071 |
+
" 2,\n",
|
1072 |
+
" 0,\n",
|
1073 |
+
" 5,\n",
|
1074 |
+
" 5,\n",
|
1075 |
+
" 0,\n",
|
1076 |
+
" 3,\n",
|
1077 |
+
" 6,\n",
|
1078 |
+
" 6,\n",
|
1079 |
+
" 5,\n",
|
1080 |
+
" 4,\n",
|
1081 |
+
" 4,\n",
|
1082 |
+
" 7,\n",
|
1083 |
+
" 0,\n",
|
1084 |
+
" 5,\n",
|
1085 |
+
" 1,\n",
|
1086 |
+
" 7,\n",
|
1087 |
+
" 0,\n",
|
1088 |
+
" 3,\n",
|
1089 |
+
" 1,\n",
|
1090 |
+
" 7,\n",
|
1091 |
+
" 0,\n",
|
1092 |
+
" 1,\n",
|
1093 |
+
" 4,\n",
|
1094 |
+
" 7,\n",
|
1095 |
+
" 5,\n",
|
1096 |
+
" 0,\n",
|
1097 |
+
" 4,\n",
|
1098 |
+
" 0,\n",
|
1099 |
+
" 0,\n",
|
1100 |
+
" 1,\n",
|
1101 |
+
" 0,\n",
|
1102 |
+
" 6,\n",
|
1103 |
+
" 4,\n",
|
1104 |
+
" 0,\n",
|
1105 |
+
" 5,\n",
|
1106 |
+
" 4,\n",
|
1107 |
+
" 6,\n",
|
1108 |
+
" 6,\n",
|
1109 |
+
" 7,\n",
|
1110 |
+
" 2,\n",
|
1111 |
+
" 6,\n",
|
1112 |
+
" 2,\n",
|
1113 |
+
" 6,\n",
|
1114 |
+
" 0,\n",
|
1115 |
+
" 3,\n",
|
1116 |
+
" 2,\n",
|
1117 |
+
" 2,\n",
|
1118 |
+
" 1,\n",
|
1119 |
+
" 5,\n",
|
1120 |
+
" 4,\n",
|
1121 |
+
" 7,\n",
|
1122 |
+
" 6,\n",
|
1123 |
+
" 6,\n",
|
1124 |
+
" 2,\n",
|
1125 |
+
" 5,\n",
|
1126 |
+
" 5,\n",
|
1127 |
+
" 5,\n",
|
1128 |
+
" 0,\n",
|
1129 |
+
" 3,\n",
|
1130 |
+
" 5,\n",
|
1131 |
+
" 4,\n",
|
1132 |
+
" 5,\n",
|
1133 |
+
" 7,\n",
|
1134 |
+
" 5,\n",
|
1135 |
+
" 0,\n",
|
1136 |
+
" 5,\n",
|
1137 |
+
" 0,\n",
|
1138 |
+
" 0,\n",
|
1139 |
+
" 2,\n",
|
1140 |
+
" 0,\n",
|
1141 |
+
" 2,\n",
|
1142 |
+
" 1,\n",
|
1143 |
+
" 0,\n",
|
1144 |
+
" 2,\n",
|
1145 |
+
" 4,\n",
|
1146 |
+
" 3,\n",
|
1147 |
+
" 4,\n",
|
1148 |
+
" 1,\n",
|
1149 |
+
" 7,\n",
|
1150 |
+
" 2,\n",
|
1151 |
+
" 1,\n",
|
1152 |
+
" 0,\n",
|
1153 |
+
" 3,\n",
|
1154 |
+
" 0,\n",
|
1155 |
+
" 3,\n",
|
1156 |
+
" 1,\n",
|
1157 |
+
" 1,\n",
|
1158 |
+
" 0,\n",
|
1159 |
+
" 5,\n",
|
1160 |
+
" 3,\n",
|
1161 |
+
" 1,\n",
|
1162 |
+
" 2,\n",
|
1163 |
+
" 5,\n",
|
1164 |
+
" 6,\n",
|
1165 |
+
" 7,\n",
|
1166 |
+
" 6,\n",
|
1167 |
+
" 7,\n",
|
1168 |
+
" 0,\n",
|
1169 |
+
" 2,\n",
|
1170 |
+
" 6,\n",
|
1171 |
+
" 3,\n",
|
1172 |
+
" 1,\n",
|
1173 |
+
" 5,\n",
|
1174 |
+
" 4,\n",
|
1175 |
+
" 2,\n",
|
1176 |
+
" 4,\n",
|
1177 |
+
" 6,\n",
|
1178 |
+
" 5,\n",
|
1179 |
+
" 2,\n",
|
1180 |
+
" 7,\n",
|
1181 |
+
" ...]"
|
1182 |
+
]
|
1183 |
+
},
|
1184 |
+
"execution_count": 6,
|
1185 |
+
"metadata": {},
|
1186 |
+
"output_type": "execute_result"
|
1187 |
+
}
|
1188 |
+
],
|
1189 |
+
"source": [
|
1190 |
+
"\n",
|
1191 |
+
"#--------------------------------------------------------------------------------------------\n",
|
1192 |
+
"# YOUR MODEL INFERENCE CODE HERE\n",
|
1193 |
+
"# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
|
1194 |
+
"#-------------------------------------------------------------------------------------------- \n",
|
1195 |
+
"\n",
|
1196 |
+
"# Make random predictions (placeholder for actual model inference)\n",
|
1197 |
+
"true_labels = test_dataset[\"label\"]\n",
|
1198 |
+
"predictions = [random.randint(0, 1) for _ in range(len(true_labels))]\n",
|
1199 |
+
"\n",
|
1200 |
+
"predictions\n",
|
1201 |
+
"\n",
|
1202 |
+
"#--------------------------------------------------------------------------------------------\n",
|
1203 |
+
"# YOUR MODEL INFERENCE STOPS HERE\n",
|
1204 |
+
"#-------------------------------------------------------------------------------------------- "
|
1205 |
+
]
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"cell_type": "code",
|
1209 |
+
"execution_count": 8,
|
1210 |
+
"metadata": {},
|
1211 |
+
"outputs": [
|
1212 |
+
{
|
1213 |
+
"name": "stderr",
|
1214 |
+
"output_type": "stream",
|
1215 |
+
"text": [
|
1216 |
+
"[codecarbon WARNING @ 19:53:32] Background scheduler didn't run for a long period (47s), results might be inaccurate\n",
|
1217 |
+
"[codecarbon INFO @ 19:53:32] Energy consumed for RAM : 0.000156 kWh. RAM Power : 11.755242347717285 W\n",
|
1218 |
+
"[codecarbon INFO @ 19:53:32] Delta energy consumed for CPU with constant : 0.000564 kWh, power : 42.5 W\n",
|
1219 |
+
"[codecarbon INFO @ 19:53:32] Energy consumed for All CPU : 0.000564 kWh\n",
|
1220 |
+
"[codecarbon INFO @ 19:53:32] 0.000720 kWh of electricity used since the beginning.\n"
|
1221 |
+
]
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"data": {
|
1225 |
+
"text/plain": [
|
1226 |
+
"EmissionsData(timestamp='2025-01-21T19:53:32', project_name='codecarbon', run_id='908f2e7e-4bb2-4991-a0f6-56bf8d7eda21', experiment_id='5b0fa12a-3dd7-45bb-9766-cc326314d9f1', duration=47.736408500000834, emissions=4.032368007471064e-05, emissions_rate=8.444466886328872e-07, cpu_power=42.5, gpu_power=0.0, ram_power=11.755242347717285, cpu_energy=0.0005636615353475565, gpu_energy=0, ram_energy=0.00015590305493261682, energy_consumed=0.0007195645902801733, country_name='France', country_iso_code='FRA', region='île-de-france', cloud_provider='', cloud_region='', os='Windows-11-10.0.22631-SP0', python_version='3.12.7', codecarbon_version='3.0.0_rc0', cpu_count=12, cpu_model='13th Gen Intel(R) Core(TM) i7-1365U', gpu_count=None, gpu_model=None, longitude=2.3494, latitude=48.8558, ram_total_size=31.347312927246094, tracking_mode='machine', on_cloud='N', pue=1.0)"
|
1227 |
+
]
|
1228 |
+
},
|
1229 |
+
"execution_count": 8,
|
1230 |
+
"metadata": {},
|
1231 |
+
"output_type": "execute_result"
|
1232 |
+
}
|
1233 |
+
],
|
1234 |
+
"source": [
|
1235 |
+
"# Stop tracking emissions\n",
|
1236 |
+
"emissions_data = tracker.stop_task()\n",
|
1237 |
+
"emissions_data"
|
1238 |
+
]
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"cell_type": "code",
|
1242 |
+
"execution_count": 9,
|
1243 |
+
"metadata": {},
|
1244 |
+
"outputs": [
|
1245 |
+
{
|
1246 |
+
"data": {
|
1247 |
+
"text/plain": [
|
1248 |
+
"0.10090237899917966"
|
1249 |
+
]
|
1250 |
+
},
|
1251 |
+
"execution_count": 9,
|
1252 |
+
"metadata": {},
|
1253 |
+
"output_type": "execute_result"
|
1254 |
+
}
|
1255 |
+
],
|
1256 |
+
"source": [
|
1257 |
+
"# Calculate accuracy\n",
|
1258 |
+
"accuracy = accuracy_score(true_labels, predictions)\n",
|
1259 |
+
"accuracy"
|
1260 |
+
]
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"cell_type": "code",
|
1264 |
+
"execution_count": 10,
|
1265 |
+
"metadata": {},
|
1266 |
+
"outputs": [
|
1267 |
+
{
|
1268 |
+
"data": {
|
1269 |
+
"text/plain": [
|
1270 |
+
"{'submission_timestamp': '2025-01-21T19:53:46.639165',\n",
|
1271 |
+
" 'accuracy': 0.10090237899917966,\n",
|
1272 |
+
" 'energy_consumed_wh': 0.7195645902801733,\n",
|
1273 |
+
" 'emissions_gco2eq': 0.040323680074710634,\n",
|
1274 |
+
" 'emissions_data': {'run_id': '908f2e7e-4bb2-4991-a0f6-56bf8d7eda21',\n",
|
1275 |
+
" 'duration': 47.736408500000834,\n",
|
1276 |
+
" 'emissions': 4.032368007471064e-05,\n",
|
1277 |
+
" 'emissions_rate': 8.444466886328872e-07,\n",
|
1278 |
+
" 'cpu_power': 42.5,\n",
|
1279 |
+
" 'gpu_power': 0.0,\n",
|
1280 |
+
" 'ram_power': 11.755242347717285,\n",
|
1281 |
+
" 'cpu_energy': 0.0005636615353475565,\n",
|
1282 |
+
" 'gpu_energy': 0,\n",
|
1283 |
+
" 'ram_energy': 0.00015590305493261682,\n",
|
1284 |
+
" 'energy_consumed': 0.0007195645902801733,\n",
|
1285 |
+
" 'country_name': 'France',\n",
|
1286 |
+
" 'country_iso_code': 'FRA',\n",
|
1287 |
+
" 'region': 'île-de-france',\n",
|
1288 |
+
" 'cloud_provider': '',\n",
|
1289 |
+
" 'cloud_region': '',\n",
|
1290 |
+
" 'os': 'Windows-11-10.0.22631-SP0',\n",
|
1291 |
+
" 'python_version': '3.12.7',\n",
|
1292 |
+
" 'codecarbon_version': '3.0.0_rc0',\n",
|
1293 |
+
" 'cpu_count': 12,\n",
|
1294 |
+
" 'cpu_model': '13th Gen Intel(R) Core(TM) i7-1365U',\n",
|
1295 |
+
" 'gpu_count': None,\n",
|
1296 |
+
" 'gpu_model': None,\n",
|
1297 |
+
" 'ram_total_size': 31.347312927246094,\n",
|
1298 |
+
" 'tracking_mode': 'machine',\n",
|
1299 |
+
" 'on_cloud': 'N',\n",
|
1300 |
+
" 'pue': 1.0},\n",
|
1301 |
+
" 'dataset_config': {'dataset_name': 'QuotaClimat/frugalaichallenge-text-train',\n",
|
1302 |
+
" 'test_size': 0.2,\n",
|
1303 |
+
" 'test_seed': 42}}"
|
1304 |
+
]
|
1305 |
+
},
|
1306 |
+
"execution_count": 10,
|
1307 |
+
"metadata": {},
|
1308 |
+
"output_type": "execute_result"
|
1309 |
+
}
|
1310 |
+
],
|
1311 |
+
"source": [
|
1312 |
+
"# Prepare results dictionary\n",
|
1313 |
+
"results = {\n",
|
1314 |
+
" \"submission_timestamp\": datetime.now().isoformat(),\n",
|
1315 |
+
" \"accuracy\": float(accuracy),\n",
|
1316 |
+
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
|
1317 |
+
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
|
1318 |
+
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
|
1319 |
+
" \"dataset_config\": {\n",
|
1320 |
+
" \"dataset_name\": request.dataset_name,\n",
|
1321 |
+
" \"test_size\": request.test_size,\n",
|
1322 |
+
" \"test_seed\": request.test_seed\n",
|
1323 |
+
" }\n",
|
1324 |
+
"}\n",
|
1325 |
+
"\n",
|
1326 |
+
"results"
|
1327 |
+
]
|
1328 |
+
}
|
1329 |
+
],
|
1330 |
+
"metadata": {
|
1331 |
+
"kernelspec": {
|
1332 |
+
"display_name": "base",
|
1333 |
+
"language": "python",
|
1334 |
+
"name": "python3"
|
1335 |
+
},
|
1336 |
+
"language_info": {
|
1337 |
+
"codemirror_mode": {
|
1338 |
+
"name": "ipython",
|
1339 |
+
"version": 3
|
1340 |
+
},
|
1341 |
+
"file_extension": ".py",
|
1342 |
+
"mimetype": "text/x-python",
|
1343 |
+
"name": "python",
|
1344 |
+
"nbconvert_exporter": "python",
|
1345 |
+
"pygments_lexer": "ipython3",
|
1346 |
+
"version": "3.12.7"
|
1347 |
+
}
|
1348 |
+
},
|
1349 |
+
"nbformat": 4,
|
1350 |
+
"nbformat_minor": 2
|
1351 |
+
}
|
notebooks/template-image.ipynb
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Image task notebook template\n",
|
8 |
+
"## Loading the necessary libraries"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 13,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"from fastapi import APIRouter\n",
|
18 |
+
"from datetime import datetime\n",
|
19 |
+
"from datasets import load_dataset\n",
|
20 |
+
"from sklearn.metrics import accuracy_score, precision_score, recall_score\n",
|
21 |
+
"\n",
|
22 |
+
"import random\n",
|
23 |
+
"\n",
|
24 |
+
"import sys\n",
|
25 |
+
"sys.path.append('../')\n",
|
26 |
+
"\n",
|
27 |
+
"from tasks.utils.evaluation import ImageEvaluationRequest\n",
|
28 |
+
"from tasks.utils.emissions import tracker, clean_emissions_data, get_space_info\n",
|
29 |
+
"from tasks.image import parse_boxes,compute_iou,compute_max_iou"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "markdown",
|
34 |
+
"metadata": {},
|
35 |
+
"source": [
|
36 |
+
"## Loading the datasets and splitting them"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 4,
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"application/vnd.jupyter.widget-view+json": {
|
47 |
+
"model_id": "4f62b23ca587477d9f37430e687bf951",
|
48 |
+
"version_major": 2,
|
49 |
+
"version_minor": 0
|
50 |
+
},
|
51 |
+
"text/plain": [
|
52 |
+
"README.md: 0%| | 0.00/7.72k [00:00<?, ?B/s]"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"metadata": {},
|
56 |
+
"output_type": "display_data"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"name": "stderr",
|
60 |
+
"output_type": "stream",
|
61 |
+
"text": [
|
62 |
+
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\datasets--pyronear--pyro-sdis. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
63 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
64 |
+
" warnings.warn(message)\n"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"data": {
|
69 |
+
"application/vnd.jupyter.widget-view+json": {
|
70 |
+
"model_id": "70735dd748e343119b5a7cd966dcd0f0",
|
71 |
+
"version_major": 2,
|
72 |
+
"version_minor": 0
|
73 |
+
},
|
74 |
+
"text/plain": [
|
75 |
+
"train-00000-of-00007.parquet: 0%| | 0.00/433M [00:00<?, ?B/s]"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
"metadata": {},
|
79 |
+
"output_type": "display_data"
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"data": {
|
83 |
+
"application/vnd.jupyter.widget-view+json": {
|
84 |
+
"model_id": "903c3227c24649f1a0424e039d74d303",
|
85 |
+
"version_major": 2,
|
86 |
+
"version_minor": 0
|
87 |
+
},
|
88 |
+
"text/plain": [
|
89 |
+
"train-00001-of-00007.parquet: 0%| | 0.00/434M [00:00<?, ?B/s]"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"metadata": {},
|
93 |
+
"output_type": "display_data"
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"data": {
|
97 |
+
"application/vnd.jupyter.widget-view+json": {
|
98 |
+
"model_id": "8795b7696f124715b9d52287d5cd4ee0",
|
99 |
+
"version_major": 2,
|
100 |
+
"version_minor": 0
|
101 |
+
},
|
102 |
+
"text/plain": [
|
103 |
+
"train-00002-of-00007.parquet: 0%| | 0.00/432M [00:00<?, ?B/s]"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "display_data"
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"application/vnd.jupyter.widget-view+json": {
|
112 |
+
"model_id": "4b6c1240bf024d61bf913584d13834f5",
|
113 |
+
"version_major": 2,
|
114 |
+
"version_minor": 0
|
115 |
+
},
|
116 |
+
"text/plain": [
|
117 |
+
"train-00003-of-00007.parquet: 0%| | 0.00/428M [00:00<?, ?B/s]"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
"metadata": {},
|
121 |
+
"output_type": "display_data"
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"data": {
|
125 |
+
"application/vnd.jupyter.widget-view+json": {
|
126 |
+
"model_id": "cd5f8172a31f4fd79d489db96ede9c21",
|
127 |
+
"version_major": 2,
|
128 |
+
"version_minor": 0
|
129 |
+
},
|
130 |
+
"text/plain": [
|
131 |
+
"train-00004-of-00007.parquet: 0%| | 0.00/431M [00:00<?, ?B/s]"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
"metadata": {},
|
135 |
+
"output_type": "display_data"
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"data": {
|
139 |
+
"application/vnd.jupyter.widget-view+json": {
|
140 |
+
"model_id": "416af82dba3a4ab7ad13190703c90757",
|
141 |
+
"version_major": 2,
|
142 |
+
"version_minor": 0
|
143 |
+
},
|
144 |
+
"text/plain": [
|
145 |
+
"train-00005-of-00007.parquet: 0%| | 0.00/429M [00:00<?, ?B/s]"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
"metadata": {},
|
149 |
+
"output_type": "display_data"
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"data": {
|
153 |
+
"application/vnd.jupyter.widget-view+json": {
|
154 |
+
"model_id": "6819ad85508641a1a64bea34303446ac",
|
155 |
+
"version_major": 2,
|
156 |
+
"version_minor": 0
|
157 |
+
},
|
158 |
+
"text/plain": [
|
159 |
+
"train-00006-of-00007.parquet: 0%| | 0.00/431M [00:00<?, ?B/s]"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "display_data"
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"data": {
|
167 |
+
"application/vnd.jupyter.widget-view+json": {
|
168 |
+
"model_id": "90a7f85c802b4330b502c8bbd3cca7f9",
|
169 |
+
"version_major": 2,
|
170 |
+
"version_minor": 0
|
171 |
+
},
|
172 |
+
"text/plain": [
|
173 |
+
"val-00000-of-00001.parquet: 0%| | 0.00/407M [00:00<?, ?B/s]"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
"metadata": {},
|
177 |
+
"output_type": "display_data"
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"data": {
|
181 |
+
"application/vnd.jupyter.widget-view+json": {
|
182 |
+
"model_id": "b93f2f19aafb43e2b8db0fd7bb3ebd34",
|
183 |
+
"version_major": 2,
|
184 |
+
"version_minor": 0
|
185 |
+
},
|
186 |
+
"text/plain": [
|
187 |
+
"Generating train split: 0%| | 0/29537 [00:00<?, ? examples/s]"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
"metadata": {},
|
191 |
+
"output_type": "display_data"
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"data": {
|
195 |
+
"application/vnd.jupyter.widget-view+json": {
|
196 |
+
"model_id": "c14c0f2cde184c959970dfccaa26b2d2",
|
197 |
+
"version_major": 2,
|
198 |
+
"version_minor": 0
|
199 |
+
},
|
200 |
+
"text/plain": [
|
201 |
+
"Generating val split: 0%| | 0/4099 [00:00<?, ? examples/s]"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
"metadata": {},
|
205 |
+
"output_type": "display_data"
|
206 |
+
}
|
207 |
+
],
|
208 |
+
"source": [
|
209 |
+
"request = ImageEvaluationRequest()\n",
|
210 |
+
"\n",
|
211 |
+
"# Load and prepare the dataset\n",
|
212 |
+
"dataset = load_dataset(request.dataset_name)\n",
|
213 |
+
"\n",
|
214 |
+
"# Split dataset\n",
|
215 |
+
"train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
|
216 |
+
"test_dataset = train_test[\"test\"]"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "markdown",
|
221 |
+
"metadata": {},
|
222 |
+
"source": [
|
223 |
+
"## Random Baseline"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 10,
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [],
|
231 |
+
"source": [
|
232 |
+
"# Start tracking emissions\n",
|
233 |
+
"tracker.start()\n",
|
234 |
+
"tracker.start_task(\"inference\")"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": 11,
|
240 |
+
"metadata": {},
|
241 |
+
"outputs": [],
|
242 |
+
"source": [
|
243 |
+
"\n",
|
244 |
+
"#--------------------------------------------------------------------------------------------\n",
|
245 |
+
"# YOUR MODEL INFERENCE CODE HERE\n",
|
246 |
+
"# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
|
247 |
+
"#-------------------------------------------------------------------------------------------- \n",
|
248 |
+
"\n",
|
249 |
+
"# Make random predictions (placeholder for actual model inference)\n",
|
250 |
+
"\n",
|
251 |
+
"predictions = []\n",
|
252 |
+
"true_labels = []\n",
|
253 |
+
"pred_boxes = []\n",
|
254 |
+
"true_boxes_list = [] # List of lists, each inner list contains boxes for one image\n",
|
255 |
+
"\n",
|
256 |
+
"for example in test_dataset:\n",
|
257 |
+
" # Parse true annotation (YOLO format: class_id x_center y_center width height)\n",
|
258 |
+
" annotation = example.get(\"annotations\", \"\").strip()\n",
|
259 |
+
" has_smoke = len(annotation) > 0\n",
|
260 |
+
" true_labels.append(int(has_smoke))\n",
|
261 |
+
" \n",
|
262 |
+
" # Make random classification prediction\n",
|
263 |
+
" pred_has_smoke = random.random() > 0.5\n",
|
264 |
+
" predictions.append(int(pred_has_smoke))\n",
|
265 |
+
" \n",
|
266 |
+
" # If there's a true box, parse it and make random box prediction\n",
|
267 |
+
" if has_smoke:\n",
|
268 |
+
" # Parse all true boxes from the annotation\n",
|
269 |
+
" image_true_boxes = parse_boxes(annotation)\n",
|
270 |
+
" true_boxes_list.append(image_true_boxes)\n",
|
271 |
+
" \n",
|
272 |
+
" # For baseline, make one random box prediction per image\n",
|
273 |
+
" # In a real model, you might want to predict multiple boxes\n",
|
274 |
+
" random_box = [\n",
|
275 |
+
" random.random(), # x_center\n",
|
276 |
+
" random.random(), # y_center\n",
|
277 |
+
" random.random() * 0.5, # width (max 0.5)\n",
|
278 |
+
" random.random() * 0.5 # height (max 0.5)\n",
|
279 |
+
" ]\n",
|
280 |
+
" pred_boxes.append(random_box)\n",
|
281 |
+
"\n",
|
282 |
+
"\n",
|
283 |
+
"#--------------------------------------------------------------------------------------------\n",
|
284 |
+
"# YOUR MODEL INFERENCE STOPS HERE\n",
|
285 |
+
"#-------------------------------------------------------------------------------------------- "
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"metadata": {},
|
292 |
+
"outputs": [],
|
293 |
+
"source": [
|
294 |
+
"# Stop tracking emissions\n",
|
295 |
+
"emissions_data = tracker.stop_task()"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": 15,
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"import numpy as np\n",
|
305 |
+
"\n",
|
306 |
+
"# Calculate classification metrics\n",
|
307 |
+
"classification_accuracy = accuracy_score(true_labels, predictions)\n",
|
308 |
+
"classification_precision = precision_score(true_labels, predictions)\n",
|
309 |
+
"classification_recall = recall_score(true_labels, predictions)\n",
|
310 |
+
"\n",
|
311 |
+
"# Calculate mean IoU for object detection (only for images with smoke)\n",
|
312 |
+
"# For each image, we compute the max IoU between the predicted box and all true boxes\n",
|
313 |
+
"ious = []\n",
|
314 |
+
"for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):\n",
|
315 |
+
" max_iou = compute_max_iou(true_boxes, pred_box)\n",
|
316 |
+
" ious.append(max_iou)\n",
|
317 |
+
"\n",
|
318 |
+
"mean_iou = float(np.mean(ious)) if ious else 0.0"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": 18,
|
324 |
+
"metadata": {},
|
325 |
+
"outputs": [
|
326 |
+
{
|
327 |
+
"data": {
|
328 |
+
"text/plain": [
|
329 |
+
"{'submission_timestamp': '2025-01-22T15:57:37.288173',\n",
|
330 |
+
" 'classification_accuracy': 0.5001692620176033,\n",
|
331 |
+
" 'classification_precision': 0.8397129186602871,\n",
|
332 |
+
" 'classification_recall': 0.4972677595628415,\n",
|
333 |
+
" 'mean_iou': 0.002819781629108398,\n",
|
334 |
+
" 'energy_consumed_wh': 0.779355299496116,\n",
|
335 |
+
" 'emissions_gco2eq': 0.043674291628462855,\n",
|
336 |
+
" 'emissions_data': {'run_id': '4e750cd5-60f0-444c-baee-b5f7b31f784b',\n",
|
337 |
+
" 'duration': 51.72819679998793,\n",
|
338 |
+
" 'emissions': 4.3674291628462856e-05,\n",
|
339 |
+
" 'emissions_rate': 8.445163379568943e-07,\n",
|
340 |
+
" 'cpu_power': 42.5,\n",
|
341 |
+
" 'gpu_power': 0.0,\n",
|
342 |
+
" 'ram_power': 11.755242347717285,\n",
|
343 |
+
" 'cpu_energy': 0.0006104993474311617,\n",
|
344 |
+
" 'gpu_energy': 0,\n",
|
345 |
+
" 'ram_energy': 0.00016885595206495442,\n",
|
346 |
+
" 'energy_consumed': 0.0007793552994961161,\n",
|
347 |
+
" 'country_name': 'France',\n",
|
348 |
+
" 'country_iso_code': 'FRA',\n",
|
349 |
+
" 'region': 'île-de-france',\n",
|
350 |
+
" 'cloud_provider': '',\n",
|
351 |
+
" 'cloud_region': '',\n",
|
352 |
+
" 'os': 'Windows-11-10.0.22631-SP0',\n",
|
353 |
+
" 'python_version': '3.12.7',\n",
|
354 |
+
" 'codecarbon_version': '3.0.0_rc0',\n",
|
355 |
+
" 'cpu_count': 12,\n",
|
356 |
+
" 'cpu_model': '13th Gen Intel(R) Core(TM) i7-1365U',\n",
|
357 |
+
" 'gpu_count': None,\n",
|
358 |
+
" 'gpu_model': None,\n",
|
359 |
+
" 'ram_total_size': 31.347312927246094,\n",
|
360 |
+
" 'tracking_mode': 'machine',\n",
|
361 |
+
" 'on_cloud': 'N',\n",
|
362 |
+
" 'pue': 1.0},\n",
|
363 |
+
" 'dataset_config': {'dataset_name': 'pyronear/pyro-sdis',\n",
|
364 |
+
" 'test_size': 0.2,\n",
|
365 |
+
" 'test_seed': 42}}"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
"execution_count": 18,
|
369 |
+
"metadata": {},
|
370 |
+
"output_type": "execute_result"
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"source": [
|
374 |
+
"\n",
|
375 |
+
"# Prepare results dictionary\n",
|
376 |
+
"results = {\n",
|
377 |
+
" \"submission_timestamp\": datetime.now().isoformat(),\n",
|
378 |
+
" \"classification_accuracy\": float(classification_accuracy),\n",
|
379 |
+
" \"classification_precision\": float(classification_precision),\n",
|
380 |
+
" \"classification_recall\": float(classification_recall),\n",
|
381 |
+
" \"mean_iou\": mean_iou,\n",
|
382 |
+
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
|
383 |
+
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
|
384 |
+
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
|
385 |
+
" \"dataset_config\": {\n",
|
386 |
+
" \"dataset_name\": request.dataset_name,\n",
|
387 |
+
" \"test_size\": request.test_size,\n",
|
388 |
+
" \"test_seed\": request.test_seed\n",
|
389 |
+
" }\n",
|
390 |
+
"}\n",
|
391 |
+
"results"
|
392 |
+
]
|
393 |
+
}
|
394 |
+
],
|
395 |
+
"metadata": {
|
396 |
+
"kernelspec": {
|
397 |
+
"display_name": "base",
|
398 |
+
"language": "python",
|
399 |
+
"name": "python3"
|
400 |
+
},
|
401 |
+
"language_info": {
|
402 |
+
"codemirror_mode": {
|
403 |
+
"name": "ipython",
|
404 |
+
"version": 3
|
405 |
+
},
|
406 |
+
"file_extension": ".py",
|
407 |
+
"mimetype": "text/x-python",
|
408 |
+
"name": "python",
|
409 |
+
"nbconvert_exporter": "python",
|
410 |
+
"pygments_lexer": "ipython3",
|
411 |
+
"version": "3.12.7"
|
412 |
+
}
|
413 |
+
},
|
414 |
+
"nbformat": 4,
|
415 |
+
"nbformat_minor": 2
|
416 |
+
}
|
notebooks/template-text.ipynb
ADDED
@@ -0,0 +1,1642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Text task notebook template\n",
|
8 |
+
"## Loading the necessary libraries"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 3,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [
|
16 |
+
{
|
17 |
+
"name": "stderr",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"[codecarbon WARNING @ 19:48:07] Multiple instances of codecarbon are allowed to run at the same time.\n",
|
21 |
+
"[codecarbon INFO @ 19:48:07] [setup] RAM Tracking...\n",
|
22 |
+
"[codecarbon INFO @ 19:48:07] [setup] CPU Tracking...\n",
|
23 |
+
"[codecarbon WARNING @ 19:48:09] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
24 |
+
"[codecarbon WARNING @ 19:48:09] No CPU tracking mode found. Falling back on CPU constant mode. \n",
|
25 |
+
" Windows OS detected: Please install Intel Power Gadget to measure CPU\n",
|
26 |
+
"\n",
|
27 |
+
"[codecarbon WARNING @ 19:48:11] We saw that you have a 13th Gen Intel(R) Core(TM) i7-1365U but we don't know it. Please contact us.\n",
|
28 |
+
"[codecarbon INFO @ 19:48:11] CPU Model on constant consumption mode: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
29 |
+
"[codecarbon WARNING @ 19:48:11] No CPU tracking mode found. Falling back on CPU constant mode.\n",
|
30 |
+
"[codecarbon INFO @ 19:48:11] [setup] GPU Tracking...\n",
|
31 |
+
"[codecarbon INFO @ 19:48:11] No GPU found.\n",
|
32 |
+
"[codecarbon INFO @ 19:48:11] >>> Tracker's metadata:\n",
|
33 |
+
"[codecarbon INFO @ 19:48:11] Platform system: Windows-11-10.0.22631-SP0\n",
|
34 |
+
"[codecarbon INFO @ 19:48:11] Python version: 3.12.7\n",
|
35 |
+
"[codecarbon INFO @ 19:48:11] CodeCarbon version: 3.0.0_rc0\n",
|
36 |
+
"[codecarbon INFO @ 19:48:11] Available RAM : 31.347 GB\n",
|
37 |
+
"[codecarbon INFO @ 19:48:11] CPU count: 12\n",
|
38 |
+
"[codecarbon INFO @ 19:48:11] CPU model: 13th Gen Intel(R) Core(TM) i7-1365U\n",
|
39 |
+
"[codecarbon INFO @ 19:48:11] GPU count: None\n",
|
40 |
+
"[codecarbon INFO @ 19:48:11] GPU model: None\n",
|
41 |
+
"[codecarbon INFO @ 19:48:11] Saving emissions data to file c:\\git\\submission-template\\notebooks\\emissions.csv\n"
|
42 |
+
]
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"from fastapi import APIRouter\n",
|
47 |
+
"from datetime import datetime\n",
|
48 |
+
"from datasets import load_dataset\n",
|
49 |
+
"from sklearn.metrics import accuracy_score\n",
|
50 |
+
"import random\n",
|
51 |
+
"\n",
|
52 |
+
"import sys\n",
|
53 |
+
"sys.path.append('../tasks')\n",
|
54 |
+
"\n",
|
55 |
+
"from utils.evaluation import TextEvaluationRequest\n",
|
56 |
+
"from utils.emissions import tracker, clean_emissions_data, get_space_info\n",
|
57 |
+
"\n",
|
58 |
+
"\n",
|
59 |
+
"# Define the label mapping\n",
|
60 |
+
"LABEL_MAPPING = {\n",
|
61 |
+
" \"0_not_relevant\": 0,\n",
|
62 |
+
" \"1_not_happening\": 1,\n",
|
63 |
+
" \"2_not_human\": 2,\n",
|
64 |
+
" \"3_not_bad\": 3,\n",
|
65 |
+
" \"4_solutions_harmful_unnecessary\": 4,\n",
|
66 |
+
" \"5_science_unreliable\": 5,\n",
|
67 |
+
" \"6_proponents_biased\": 6,\n",
|
68 |
+
" \"7_fossil_fuels_needed\": 7\n",
|
69 |
+
"}"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"metadata": {},
|
75 |
+
"source": [
|
76 |
+
"## Loading the datasets and splitting them"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 4,
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "668da7bf85434e098b95c3ec447d78fe",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"README.md: 0%| | 0.00/5.18k [00:00<?, ?B/s]"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"name": "stderr",
|
100 |
+
"output_type": "stream",
|
101 |
+
"text": [
|
102 |
+
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\datasets--QuotaClimat--frugalaichallenge-text-train. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
103 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
104 |
+
" warnings.warn(message)\n"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"data": {
|
109 |
+
"application/vnd.jupyter.widget-view+json": {
|
110 |
+
"model_id": "5b68d43359eb429395da8be7d4b15556",
|
111 |
+
"version_major": 2,
|
112 |
+
"version_minor": 0
|
113 |
+
},
|
114 |
+
"text/plain": [
|
115 |
+
"train.parquet: 0%| | 0.00/1.21M [00:00<?, ?B/s]"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"metadata": {},
|
119 |
+
"output_type": "display_data"
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"data": {
|
123 |
+
"application/vnd.jupyter.widget-view+json": {
|
124 |
+
"model_id": "140a304773914e9db8f698eabeb40298",
|
125 |
+
"version_major": 2,
|
126 |
+
"version_minor": 0
|
127 |
+
},
|
128 |
+
"text/plain": [
|
129 |
+
"Generating train split: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
"metadata": {},
|
133 |
+
"output_type": "display_data"
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"data": {
|
137 |
+
"application/vnd.jupyter.widget-view+json": {
|
138 |
+
"model_id": "6d04e8ab1906400e8e0029949dc523a5",
|
139 |
+
"version_major": 2,
|
140 |
+
"version_minor": 0
|
141 |
+
},
|
142 |
+
"text/plain": [
|
143 |
+
"Map: 0%| | 0/6091 [00:00<?, ? examples/s]"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
"metadata": {},
|
147 |
+
"output_type": "display_data"
|
148 |
+
}
|
149 |
+
],
|
150 |
+
"source": [
|
151 |
+
"request = TextEvaluationRequest()\n",
|
152 |
+
"\n",
|
153 |
+
"# Load and prepare the dataset\n",
|
154 |
+
"dataset = load_dataset(request.dataset_name)\n",
|
155 |
+
"\n",
|
156 |
+
"# Convert string labels to integers\n",
|
157 |
+
"dataset = dataset.map(lambda x: {\"label\": LABEL_MAPPING[x[\"label\"]]})\n",
|
158 |
+
"\n",
|
159 |
+
"# Split dataset\n",
|
160 |
+
"train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
|
161 |
+
"test_dataset = train_test[\"test\"]"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "markdown",
|
166 |
+
"metadata": {},
|
167 |
+
"source": [
|
168 |
+
"## Random Baseline"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": 5,
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"# Start tracking emissions\n",
|
178 |
+
"tracker.start()\n",
|
179 |
+
"tracker.start_task(\"inference\")"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": 6,
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [
|
187 |
+
{
|
188 |
+
"data": {
|
189 |
+
"text/plain": [
|
190 |
+
"[1,\n",
|
191 |
+
" 7,\n",
|
192 |
+
" 6,\n",
|
193 |
+
" 6,\n",
|
194 |
+
" 2,\n",
|
195 |
+
" 0,\n",
|
196 |
+
" 1,\n",
|
197 |
+
" 7,\n",
|
198 |
+
" 3,\n",
|
199 |
+
" 6,\n",
|
200 |
+
" 6,\n",
|
201 |
+
" 3,\n",
|
202 |
+
" 6,\n",
|
203 |
+
" 6,\n",
|
204 |
+
" 5,\n",
|
205 |
+
" 0,\n",
|
206 |
+
" 2,\n",
|
207 |
+
" 6,\n",
|
208 |
+
" 2,\n",
|
209 |
+
" 6,\n",
|
210 |
+
" 5,\n",
|
211 |
+
" 4,\n",
|
212 |
+
" 1,\n",
|
213 |
+
" 3,\n",
|
214 |
+
" 6,\n",
|
215 |
+
" 4,\n",
|
216 |
+
" 2,\n",
|
217 |
+
" 1,\n",
|
218 |
+
" 4,\n",
|
219 |
+
" 0,\n",
|
220 |
+
" 3,\n",
|
221 |
+
" 4,\n",
|
222 |
+
" 1,\n",
|
223 |
+
" 5,\n",
|
224 |
+
" 5,\n",
|
225 |
+
" 1,\n",
|
226 |
+
" 2,\n",
|
227 |
+
" 7,\n",
|
228 |
+
" 6,\n",
|
229 |
+
" 1,\n",
|
230 |
+
" 3,\n",
|
231 |
+
" 1,\n",
|
232 |
+
" 7,\n",
|
233 |
+
" 7,\n",
|
234 |
+
" 0,\n",
|
235 |
+
" 0,\n",
|
236 |
+
" 3,\n",
|
237 |
+
" 3,\n",
|
238 |
+
" 3,\n",
|
239 |
+
" 4,\n",
|
240 |
+
" 1,\n",
|
241 |
+
" 4,\n",
|
242 |
+
" 4,\n",
|
243 |
+
" 1,\n",
|
244 |
+
" 4,\n",
|
245 |
+
" 5,\n",
|
246 |
+
" 6,\n",
|
247 |
+
" 1,\n",
|
248 |
+
" 2,\n",
|
249 |
+
" 2,\n",
|
250 |
+
" 2,\n",
|
251 |
+
" 5,\n",
|
252 |
+
" 2,\n",
|
253 |
+
" 7,\n",
|
254 |
+
" 2,\n",
|
255 |
+
" 7,\n",
|
256 |
+
" 7,\n",
|
257 |
+
" 6,\n",
|
258 |
+
" 4,\n",
|
259 |
+
" 2,\n",
|
260 |
+
" 0,\n",
|
261 |
+
" 1,\n",
|
262 |
+
" 6,\n",
|
263 |
+
" 3,\n",
|
264 |
+
" 2,\n",
|
265 |
+
" 5,\n",
|
266 |
+
" 5,\n",
|
267 |
+
" 2,\n",
|
268 |
+
" 0,\n",
|
269 |
+
" 7,\n",
|
270 |
+
" 0,\n",
|
271 |
+
" 1,\n",
|
272 |
+
" 5,\n",
|
273 |
+
" 5,\n",
|
274 |
+
" 7,\n",
|
275 |
+
" 4,\n",
|
276 |
+
" 6,\n",
|
277 |
+
" 7,\n",
|
278 |
+
" 1,\n",
|
279 |
+
" 7,\n",
|
280 |
+
" 1,\n",
|
281 |
+
" 0,\n",
|
282 |
+
" 3,\n",
|
283 |
+
" 4,\n",
|
284 |
+
" 2,\n",
|
285 |
+
" 5,\n",
|
286 |
+
" 3,\n",
|
287 |
+
" 3,\n",
|
288 |
+
" 3,\n",
|
289 |
+
" 2,\n",
|
290 |
+
" 2,\n",
|
291 |
+
" 1,\n",
|
292 |
+
" 0,\n",
|
293 |
+
" 4,\n",
|
294 |
+
" 5,\n",
|
295 |
+
" 7,\n",
|
296 |
+
" 0,\n",
|
297 |
+
" 3,\n",
|
298 |
+
" 1,\n",
|
299 |
+
" 4,\n",
|
300 |
+
" 6,\n",
|
301 |
+
" 0,\n",
|
302 |
+
" 7,\n",
|
303 |
+
" 1,\n",
|
304 |
+
" 1,\n",
|
305 |
+
" 2,\n",
|
306 |
+
" 2,\n",
|
307 |
+
" 4,\n",
|
308 |
+
" 0,\n",
|
309 |
+
" 4,\n",
|
310 |
+
" 3,\n",
|
311 |
+
" 4,\n",
|
312 |
+
" 4,\n",
|
313 |
+
" 2,\n",
|
314 |
+
" 2,\n",
|
315 |
+
" 3,\n",
|
316 |
+
" 3,\n",
|
317 |
+
" 7,\n",
|
318 |
+
" 4,\n",
|
319 |
+
" 7,\n",
|
320 |
+
" 6,\n",
|
321 |
+
" 4,\n",
|
322 |
+
" 5,\n",
|
323 |
+
" 4,\n",
|
324 |
+
" 3,\n",
|
325 |
+
" 6,\n",
|
326 |
+
" 0,\n",
|
327 |
+
" 4,\n",
|
328 |
+
" 0,\n",
|
329 |
+
" 1,\n",
|
330 |
+
" 3,\n",
|
331 |
+
" 6,\n",
|
332 |
+
" 7,\n",
|
333 |
+
" 3,\n",
|
334 |
+
" 3,\n",
|
335 |
+
" 0,\n",
|
336 |
+
" 1,\n",
|
337 |
+
" 2,\n",
|
338 |
+
" 4,\n",
|
339 |
+
" 4,\n",
|
340 |
+
" 3,\n",
|
341 |
+
" 1,\n",
|
342 |
+
" 2,\n",
|
343 |
+
" 4,\n",
|
344 |
+
" 3,\n",
|
345 |
+
" 0,\n",
|
346 |
+
" 5,\n",
|
347 |
+
" 3,\n",
|
348 |
+
" 6,\n",
|
349 |
+
" 3,\n",
|
350 |
+
" 6,\n",
|
351 |
+
" 1,\n",
|
352 |
+
" 3,\n",
|
353 |
+
" 4,\n",
|
354 |
+
" 5,\n",
|
355 |
+
" 4,\n",
|
356 |
+
" 0,\n",
|
357 |
+
" 7,\n",
|
358 |
+
" 3,\n",
|
359 |
+
" 6,\n",
|
360 |
+
" 7,\n",
|
361 |
+
" 4,\n",
|
362 |
+
" 4,\n",
|
363 |
+
" 5,\n",
|
364 |
+
" 3,\n",
|
365 |
+
" 1,\n",
|
366 |
+
" 7,\n",
|
367 |
+
" 4,\n",
|
368 |
+
" 1,\n",
|
369 |
+
" 0,\n",
|
370 |
+
" 3,\n",
|
371 |
+
" 0,\n",
|
372 |
+
" 5,\n",
|
373 |
+
" 3,\n",
|
374 |
+
" 6,\n",
|
375 |
+
" 3,\n",
|
376 |
+
" 0,\n",
|
377 |
+
" 7,\n",
|
378 |
+
" 2,\n",
|
379 |
+
" 0,\n",
|
380 |
+
" 4,\n",
|
381 |
+
" 1,\n",
|
382 |
+
" 2,\n",
|
383 |
+
" 6,\n",
|
384 |
+
" 3,\n",
|
385 |
+
" 4,\n",
|
386 |
+
" 4,\n",
|
387 |
+
" 5,\n",
|
388 |
+
" 1,\n",
|
389 |
+
" 5,\n",
|
390 |
+
" 4,\n",
|
391 |
+
" 0,\n",
|
392 |
+
" 1,\n",
|
393 |
+
" 7,\n",
|
394 |
+
" 3,\n",
|
395 |
+
" 6,\n",
|
396 |
+
" 0,\n",
|
397 |
+
" 7,\n",
|
398 |
+
" 4,\n",
|
399 |
+
" 6,\n",
|
400 |
+
" 3,\n",
|
401 |
+
" 0,\n",
|
402 |
+
" 0,\n",
|
403 |
+
" 4,\n",
|
404 |
+
" 6,\n",
|
405 |
+
" 6,\n",
|
406 |
+
" 4,\n",
|
407 |
+
" 0,\n",
|
408 |
+
" 5,\n",
|
409 |
+
" 7,\n",
|
410 |
+
" 5,\n",
|
411 |
+
" 1,\n",
|
412 |
+
" 3,\n",
|
413 |
+
" 6,\n",
|
414 |
+
" 2,\n",
|
415 |
+
" 3,\n",
|
416 |
+
" 2,\n",
|
417 |
+
" 4,\n",
|
418 |
+
" 5,\n",
|
419 |
+
" 1,\n",
|
420 |
+
" 5,\n",
|
421 |
+
" 0,\n",
|
422 |
+
" 3,\n",
|
423 |
+
" 3,\n",
|
424 |
+
" 0,\n",
|
425 |
+
" 0,\n",
|
426 |
+
" 6,\n",
|
427 |
+
" 6,\n",
|
428 |
+
" 2,\n",
|
429 |
+
" 0,\n",
|
430 |
+
" 7,\n",
|
431 |
+
" 4,\n",
|
432 |
+
" 5,\n",
|
433 |
+
" 7,\n",
|
434 |
+
" 1,\n",
|
435 |
+
" 0,\n",
|
436 |
+
" 4,\n",
|
437 |
+
" 5,\n",
|
438 |
+
" 1,\n",
|
439 |
+
" 7,\n",
|
440 |
+
" 0,\n",
|
441 |
+
" 7,\n",
|
442 |
+
" 2,\n",
|
443 |
+
" 6,\n",
|
444 |
+
" 1,\n",
|
445 |
+
" 3,\n",
|
446 |
+
" 5,\n",
|
447 |
+
" 5,\n",
|
448 |
+
" 6,\n",
|
449 |
+
" 5,\n",
|
450 |
+
" 4,\n",
|
451 |
+
" 3,\n",
|
452 |
+
" 7,\n",
|
453 |
+
" 4,\n",
|
454 |
+
" 3,\n",
|
455 |
+
" 5,\n",
|
456 |
+
" 5,\n",
|
457 |
+
" 7,\n",
|
458 |
+
" 2,\n",
|
459 |
+
" 6,\n",
|
460 |
+
" 1,\n",
|
461 |
+
" 5,\n",
|
462 |
+
" 0,\n",
|
463 |
+
" 3,\n",
|
464 |
+
" 4,\n",
|
465 |
+
" 2,\n",
|
466 |
+
" 3,\n",
|
467 |
+
" 7,\n",
|
468 |
+
" 0,\n",
|
469 |
+
" 1,\n",
|
470 |
+
" 7,\n",
|
471 |
+
" 6,\n",
|
472 |
+
" 7,\n",
|
473 |
+
" 7,\n",
|
474 |
+
" 5,\n",
|
475 |
+
" 6,\n",
|
476 |
+
" 3,\n",
|
477 |
+
" 2,\n",
|
478 |
+
" 3,\n",
|
479 |
+
" 0,\n",
|
480 |
+
" 4,\n",
|
481 |
+
" 3,\n",
|
482 |
+
" 5,\n",
|
483 |
+
" 6,\n",
|
484 |
+
" 0,\n",
|
485 |
+
" 0,\n",
|
486 |
+
" 6,\n",
|
487 |
+
" 6,\n",
|
488 |
+
" 1,\n",
|
489 |
+
" 4,\n",
|
490 |
+
" 0,\n",
|
491 |
+
" 4,\n",
|
492 |
+
" 2,\n",
|
493 |
+
" 7,\n",
|
494 |
+
" 5,\n",
|
495 |
+
" 7,\n",
|
496 |
+
" 6,\n",
|
497 |
+
" 3,\n",
|
498 |
+
" 5,\n",
|
499 |
+
" 6,\n",
|
500 |
+
" 0,\n",
|
501 |
+
" 4,\n",
|
502 |
+
" 5,\n",
|
503 |
+
" 6,\n",
|
504 |
+
" 1,\n",
|
505 |
+
" 2,\n",
|
506 |
+
" 1,\n",
|
507 |
+
" 5,\n",
|
508 |
+
" 3,\n",
|
509 |
+
" 0,\n",
|
510 |
+
" 3,\n",
|
511 |
+
" 7,\n",
|
512 |
+
" 1,\n",
|
513 |
+
" 0,\n",
|
514 |
+
" 7,\n",
|
515 |
+
" 0,\n",
|
516 |
+
" 1,\n",
|
517 |
+
" 0,\n",
|
518 |
+
" 4,\n",
|
519 |
+
" 1,\n",
|
520 |
+
" 1,\n",
|
521 |
+
" 0,\n",
|
522 |
+
" 7,\n",
|
523 |
+
" 1,\n",
|
524 |
+
" 0,\n",
|
525 |
+
" 7,\n",
|
526 |
+
" 6,\n",
|
527 |
+
" 2,\n",
|
528 |
+
" 3,\n",
|
529 |
+
" 7,\n",
|
530 |
+
" 4,\n",
|
531 |
+
" 3,\n",
|
532 |
+
" 4,\n",
|
533 |
+
" 3,\n",
|
534 |
+
" 3,\n",
|
535 |
+
" 2,\n",
|
536 |
+
" 5,\n",
|
537 |
+
" 1,\n",
|
538 |
+
" 5,\n",
|
539 |
+
" 1,\n",
|
540 |
+
" 7,\n",
|
541 |
+
" 3,\n",
|
542 |
+
" 2,\n",
|
543 |
+
" 6,\n",
|
544 |
+
" 4,\n",
|
545 |
+
" 4,\n",
|
546 |
+
" 1,\n",
|
547 |
+
" 2,\n",
|
548 |
+
" 6,\n",
|
549 |
+
" 7,\n",
|
550 |
+
" 2,\n",
|
551 |
+
" 7,\n",
|
552 |
+
" 1,\n",
|
553 |
+
" 3,\n",
|
554 |
+
" 5,\n",
|
555 |
+
" 2,\n",
|
556 |
+
" 6,\n",
|
557 |
+
" 4,\n",
|
558 |
+
" 6,\n",
|
559 |
+
" 7,\n",
|
560 |
+
" 0,\n",
|
561 |
+
" 5,\n",
|
562 |
+
" 1,\n",
|
563 |
+
" 6,\n",
|
564 |
+
" 5,\n",
|
565 |
+
" 3,\n",
|
566 |
+
" 6,\n",
|
567 |
+
" 5,\n",
|
568 |
+
" 4,\n",
|
569 |
+
" 7,\n",
|
570 |
+
" 6,\n",
|
571 |
+
" 5,\n",
|
572 |
+
" 4,\n",
|
573 |
+
" 3,\n",
|
574 |
+
" 0,\n",
|
575 |
+
" 0,\n",
|
576 |
+
" 1,\n",
|
577 |
+
" 7,\n",
|
578 |
+
" 7,\n",
|
579 |
+
" 6,\n",
|
580 |
+
" 1,\n",
|
581 |
+
" 4,\n",
|
582 |
+
" 5,\n",
|
583 |
+
" 6,\n",
|
584 |
+
" 1,\n",
|
585 |
+
" 5,\n",
|
586 |
+
" 1,\n",
|
587 |
+
" 2,\n",
|
588 |
+
" 6,\n",
|
589 |
+
" 2,\n",
|
590 |
+
" 6,\n",
|
591 |
+
" 0,\n",
|
592 |
+
" 2,\n",
|
593 |
+
" 1,\n",
|
594 |
+
" 5,\n",
|
595 |
+
" 5,\n",
|
596 |
+
" 1,\n",
|
597 |
+
" 7,\n",
|
598 |
+
" 0,\n",
|
599 |
+
" 5,\n",
|
600 |
+
" 5,\n",
|
601 |
+
" 1,\n",
|
602 |
+
" 7,\n",
|
603 |
+
" 7,\n",
|
604 |
+
" 2,\n",
|
605 |
+
" 1,\n",
|
606 |
+
" 0,\n",
|
607 |
+
" 1,\n",
|
608 |
+
" 0,\n",
|
609 |
+
" 5,\n",
|
610 |
+
" 4,\n",
|
611 |
+
" 2,\n",
|
612 |
+
" 7,\n",
|
613 |
+
" 4,\n",
|
614 |
+
" 3,\n",
|
615 |
+
" 6,\n",
|
616 |
+
" 7,\n",
|
617 |
+
" 5,\n",
|
618 |
+
" 1,\n",
|
619 |
+
" 0,\n",
|
620 |
+
" 7,\n",
|
621 |
+
" 2,\n",
|
622 |
+
" 1,\n",
|
623 |
+
" 2,\n",
|
624 |
+
" 3,\n",
|
625 |
+
" 1,\n",
|
626 |
+
" 0,\n",
|
627 |
+
" 3,\n",
|
628 |
+
" 2,\n",
|
629 |
+
" 6,\n",
|
630 |
+
" 0,\n",
|
631 |
+
" 5,\n",
|
632 |
+
" 4,\n",
|
633 |
+
" 7,\n",
|
634 |
+
" 1,\n",
|
635 |
+
" 1,\n",
|
636 |
+
" 0,\n",
|
637 |
+
" 7,\n",
|
638 |
+
" 0,\n",
|
639 |
+
" 6,\n",
|
640 |
+
" 7,\n",
|
641 |
+
" 6,\n",
|
642 |
+
" 1,\n",
|
643 |
+
" 5,\n",
|
644 |
+
" 5,\n",
|
645 |
+
" 7,\n",
|
646 |
+
" 6,\n",
|
647 |
+
" 1,\n",
|
648 |
+
" 7,\n",
|
649 |
+
" 6,\n",
|
650 |
+
" 5,\n",
|
651 |
+
" 4,\n",
|
652 |
+
" 1,\n",
|
653 |
+
" 4,\n",
|
654 |
+
" 7,\n",
|
655 |
+
" 5,\n",
|
656 |
+
" 4,\n",
|
657 |
+
" 0,\n",
|
658 |
+
" 0,\n",
|
659 |
+
" 7,\n",
|
660 |
+
" 0,\n",
|
661 |
+
" 0,\n",
|
662 |
+
" 3,\n",
|
663 |
+
" 6,\n",
|
664 |
+
" 2,\n",
|
665 |
+
" 5,\n",
|
666 |
+
" 3,\n",
|
667 |
+
" 0,\n",
|
668 |
+
" 3,\n",
|
669 |
+
" 6,\n",
|
670 |
+
" 5,\n",
|
671 |
+
" 7,\n",
|
672 |
+
" 2,\n",
|
673 |
+
" 6,\n",
|
674 |
+
" 7,\n",
|
675 |
+
" 5,\n",
|
676 |
+
" 2,\n",
|
677 |
+
" 3,\n",
|
678 |
+
" 6,\n",
|
679 |
+
" 7,\n",
|
680 |
+
" 7,\n",
|
681 |
+
" 7,\n",
|
682 |
+
" 6,\n",
|
683 |
+
" 1,\n",
|
684 |
+
" 7,\n",
|
685 |
+
" 4,\n",
|
686 |
+
" 2,\n",
|
687 |
+
" 7,\n",
|
688 |
+
" 5,\n",
|
689 |
+
" 4,\n",
|
690 |
+
" 1,\n",
|
691 |
+
" 2,\n",
|
692 |
+
" 3,\n",
|
693 |
+
" 7,\n",
|
694 |
+
" 0,\n",
|
695 |
+
" 2,\n",
|
696 |
+
" 7,\n",
|
697 |
+
" 6,\n",
|
698 |
+
" 1,\n",
|
699 |
+
" 4,\n",
|
700 |
+
" 0,\n",
|
701 |
+
" 6,\n",
|
702 |
+
" 3,\n",
|
703 |
+
" 1,\n",
|
704 |
+
" 0,\n",
|
705 |
+
" 3,\n",
|
706 |
+
" 4,\n",
|
707 |
+
" 7,\n",
|
708 |
+
" 7,\n",
|
709 |
+
" 4,\n",
|
710 |
+
" 2,\n",
|
711 |
+
" 1,\n",
|
712 |
+
" 0,\n",
|
713 |
+
" 5,\n",
|
714 |
+
" 1,\n",
|
715 |
+
" 7,\n",
|
716 |
+
" 4,\n",
|
717 |
+
" 6,\n",
|
718 |
+
" 7,\n",
|
719 |
+
" 7,\n",
|
720 |
+
" 3,\n",
|
721 |
+
" 4,\n",
|
722 |
+
" 3,\n",
|
723 |
+
" 5,\n",
|
724 |
+
" 4,\n",
|
725 |
+
" 4,\n",
|
726 |
+
" 5,\n",
|
727 |
+
" 0,\n",
|
728 |
+
" 1,\n",
|
729 |
+
" 3,\n",
|
730 |
+
" 7,\n",
|
731 |
+
" 5,\n",
|
732 |
+
" 4,\n",
|
733 |
+
" 7,\n",
|
734 |
+
" 3,\n",
|
735 |
+
" 3,\n",
|
736 |
+
" 3,\n",
|
737 |
+
" 5,\n",
|
738 |
+
" 3,\n",
|
739 |
+
" 3,\n",
|
740 |
+
" 4,\n",
|
741 |
+
" 0,\n",
|
742 |
+
" 1,\n",
|
743 |
+
" 7,\n",
|
744 |
+
" 4,\n",
|
745 |
+
" 7,\n",
|
746 |
+
" 7,\n",
|
747 |
+
" 5,\n",
|
748 |
+
" 0,\n",
|
749 |
+
" 0,\n",
|
750 |
+
" 5,\n",
|
751 |
+
" 2,\n",
|
752 |
+
" 6,\n",
|
753 |
+
" 2,\n",
|
754 |
+
" 6,\n",
|
755 |
+
" 7,\n",
|
756 |
+
" 6,\n",
|
757 |
+
" 5,\n",
|
758 |
+
" 7,\n",
|
759 |
+
" 5,\n",
|
760 |
+
" 7,\n",
|
761 |
+
" 1,\n",
|
762 |
+
" 6,\n",
|
763 |
+
" 6,\n",
|
764 |
+
" 0,\n",
|
765 |
+
" 4,\n",
|
766 |
+
" 7,\n",
|
767 |
+
" 3,\n",
|
768 |
+
" 0,\n",
|
769 |
+
" 0,\n",
|
770 |
+
" 2,\n",
|
771 |
+
" 5,\n",
|
772 |
+
" 2,\n",
|
773 |
+
" 3,\n",
|
774 |
+
" 7,\n",
|
775 |
+
" 1,\n",
|
776 |
+
" 0,\n",
|
777 |
+
" 3,\n",
|
778 |
+
" 0,\n",
|
779 |
+
" 0,\n",
|
780 |
+
" 3,\n",
|
781 |
+
" 3,\n",
|
782 |
+
" 7,\n",
|
783 |
+
" 3,\n",
|
784 |
+
" 0,\n",
|
785 |
+
" 1,\n",
|
786 |
+
" 1,\n",
|
787 |
+
" 6,\n",
|
788 |
+
" 0,\n",
|
789 |
+
" 0,\n",
|
790 |
+
" 5,\n",
|
791 |
+
" 0,\n",
|
792 |
+
" 3,\n",
|
793 |
+
" 4,\n",
|
794 |
+
" 6,\n",
|
795 |
+
" 7,\n",
|
796 |
+
" 4,\n",
|
797 |
+
" 0,\n",
|
798 |
+
" 4,\n",
|
799 |
+
" 4,\n",
|
800 |
+
" 5,\n",
|
801 |
+
" 4,\n",
|
802 |
+
" 4,\n",
|
803 |
+
" 3,\n",
|
804 |
+
" 6,\n",
|
805 |
+
" 5,\n",
|
806 |
+
" 2,\n",
|
807 |
+
" 0,\n",
|
808 |
+
" 6,\n",
|
809 |
+
" 0,\n",
|
810 |
+
" 6,\n",
|
811 |
+
" 4,\n",
|
812 |
+
" 3,\n",
|
813 |
+
" 5,\n",
|
814 |
+
" 7,\n",
|
815 |
+
" 7,\n",
|
816 |
+
" 5,\n",
|
817 |
+
" 5,\n",
|
818 |
+
" 1,\n",
|
819 |
+
" 5,\n",
|
820 |
+
" 2,\n",
|
821 |
+
" 7,\n",
|
822 |
+
" 7,\n",
|
823 |
+
" 6,\n",
|
824 |
+
" 6,\n",
|
825 |
+
" 7,\n",
|
826 |
+
" 6,\n",
|
827 |
+
" 5,\n",
|
828 |
+
" 2,\n",
|
829 |
+
" 4,\n",
|
830 |
+
" 0,\n",
|
831 |
+
" 4,\n",
|
832 |
+
" 4,\n",
|
833 |
+
" 7,\n",
|
834 |
+
" 5,\n",
|
835 |
+
" 2,\n",
|
836 |
+
" 7,\n",
|
837 |
+
" 0,\n",
|
838 |
+
" 6,\n",
|
839 |
+
" 0,\n",
|
840 |
+
" 2,\n",
|
841 |
+
" 6,\n",
|
842 |
+
" 6,\n",
|
843 |
+
" 2,\n",
|
844 |
+
" 3,\n",
|
845 |
+
" 0,\n",
|
846 |
+
" 5,\n",
|
847 |
+
" 0,\n",
|
848 |
+
" 5,\n",
|
849 |
+
" 7,\n",
|
850 |
+
" 2,\n",
|
851 |
+
" 7,\n",
|
852 |
+
" 4,\n",
|
853 |
+
" 7,\n",
|
854 |
+
" 4,\n",
|
855 |
+
" 0,\n",
|
856 |
+
" 7,\n",
|
857 |
+
" 1,\n",
|
858 |
+
" 4,\n",
|
859 |
+
" 5,\n",
|
860 |
+
" 0,\n",
|
861 |
+
" 5,\n",
|
862 |
+
" 5,\n",
|
863 |
+
" 2,\n",
|
864 |
+
" 0,\n",
|
865 |
+
" 2,\n",
|
866 |
+
" 5,\n",
|
867 |
+
" 5,\n",
|
868 |
+
" 6,\n",
|
869 |
+
" 3,\n",
|
870 |
+
" 4,\n",
|
871 |
+
" 1,\n",
|
872 |
+
" 7,\n",
|
873 |
+
" 7,\n",
|
874 |
+
" 2,\n",
|
875 |
+
" 3,\n",
|
876 |
+
" 2,\n",
|
877 |
+
" 5,\n",
|
878 |
+
" 0,\n",
|
879 |
+
" 7,\n",
|
880 |
+
" 2,\n",
|
881 |
+
" 3,\n",
|
882 |
+
" 7,\n",
|
883 |
+
" 2,\n",
|
884 |
+
" 4,\n",
|
885 |
+
" 0,\n",
|
886 |
+
" 5,\n",
|
887 |
+
" 7,\n",
|
888 |
+
" 3,\n",
|
889 |
+
" 6,\n",
|
890 |
+
" 7,\n",
|
891 |
+
" 6,\n",
|
892 |
+
" 4,\n",
|
893 |
+
" 3,\n",
|
894 |
+
" 6,\n",
|
895 |
+
" 5,\n",
|
896 |
+
" 4,\n",
|
897 |
+
" 0,\n",
|
898 |
+
" 3,\n",
|
899 |
+
" 4,\n",
|
900 |
+
" 3,\n",
|
901 |
+
" 5,\n",
|
902 |
+
" 2,\n",
|
903 |
+
" 4,\n",
|
904 |
+
" 0,\n",
|
905 |
+
" 3,\n",
|
906 |
+
" 6,\n",
|
907 |
+
" 1,\n",
|
908 |
+
" 3,\n",
|
909 |
+
" 1,\n",
|
910 |
+
" 4,\n",
|
911 |
+
" 3,\n",
|
912 |
+
" 3,\n",
|
913 |
+
" 3,\n",
|
914 |
+
" 0,\n",
|
915 |
+
" 7,\n",
|
916 |
+
" 6,\n",
|
917 |
+
" 2,\n",
|
918 |
+
" 4,\n",
|
919 |
+
" 6,\n",
|
920 |
+
" 5,\n",
|
921 |
+
" 4,\n",
|
922 |
+
" 1,\n",
|
923 |
+
" 7,\n",
|
924 |
+
" 6,\n",
|
925 |
+
" 1,\n",
|
926 |
+
" 4,\n",
|
927 |
+
" 3,\n",
|
928 |
+
" 0,\n",
|
929 |
+
" 7,\n",
|
930 |
+
" 3,\n",
|
931 |
+
" 1,\n",
|
932 |
+
" 2,\n",
|
933 |
+
" 1,\n",
|
934 |
+
" 6,\n",
|
935 |
+
" 4,\n",
|
936 |
+
" 7,\n",
|
937 |
+
" 1,\n",
|
938 |
+
" 7,\n",
|
939 |
+
" 1,\n",
|
940 |
+
" 5,\n",
|
941 |
+
" 1,\n",
|
942 |
+
" 6,\n",
|
943 |
+
" 3,\n",
|
944 |
+
" 0,\n",
|
945 |
+
" 2,\n",
|
946 |
+
" 6,\n",
|
947 |
+
" 7,\n",
|
948 |
+
" 7,\n",
|
949 |
+
" 0,\n",
|
950 |
+
" 1,\n",
|
951 |
+
" 4,\n",
|
952 |
+
" 0,\n",
|
953 |
+
" 4,\n",
|
954 |
+
" 5,\n",
|
955 |
+
" 3,\n",
|
956 |
+
" 6,\n",
|
957 |
+
" 2,\n",
|
958 |
+
" 3,\n",
|
959 |
+
" 4,\n",
|
960 |
+
" 1,\n",
|
961 |
+
" 6,\n",
|
962 |
+
" 2,\n",
|
963 |
+
" 4,\n",
|
964 |
+
" 4,\n",
|
965 |
+
" 6,\n",
|
966 |
+
" 4,\n",
|
967 |
+
" 5,\n",
|
968 |
+
" 7,\n",
|
969 |
+
" 1,\n",
|
970 |
+
" 7,\n",
|
971 |
+
" 7,\n",
|
972 |
+
" 4,\n",
|
973 |
+
" 7,\n",
|
974 |
+
" 4,\n",
|
975 |
+
" 3,\n",
|
976 |
+
" 3,\n",
|
977 |
+
" 6,\n",
|
978 |
+
" 1,\n",
|
979 |
+
" 2,\n",
|
980 |
+
" 0,\n",
|
981 |
+
" 0,\n",
|
982 |
+
" 0,\n",
|
983 |
+
" 2,\n",
|
984 |
+
" 5,\n",
|
985 |
+
" 6,\n",
|
986 |
+
" 5,\n",
|
987 |
+
" 7,\n",
|
988 |
+
" 5,\n",
|
989 |
+
" 7,\n",
|
990 |
+
" 1,\n",
|
991 |
+
" 1,\n",
|
992 |
+
" 2,\n",
|
993 |
+
" 1,\n",
|
994 |
+
" 6,\n",
|
995 |
+
" 5,\n",
|
996 |
+
" 7,\n",
|
997 |
+
" 0,\n",
|
998 |
+
" 0,\n",
|
999 |
+
" 5,\n",
|
1000 |
+
" 5,\n",
|
1001 |
+
" 0,\n",
|
1002 |
+
" 3,\n",
|
1003 |
+
" 7,\n",
|
1004 |
+
" 5,\n",
|
1005 |
+
" 2,\n",
|
1006 |
+
" 5,\n",
|
1007 |
+
" 4,\n",
|
1008 |
+
" 2,\n",
|
1009 |
+
" 3,\n",
|
1010 |
+
" 6,\n",
|
1011 |
+
" 2,\n",
|
1012 |
+
" 3,\n",
|
1013 |
+
" 6,\n",
|
1014 |
+
" 0,\n",
|
1015 |
+
" 0,\n",
|
1016 |
+
" 2,\n",
|
1017 |
+
" 6,\n",
|
1018 |
+
" 0,\n",
|
1019 |
+
" 1,\n",
|
1020 |
+
" 3,\n",
|
1021 |
+
" 3,\n",
|
1022 |
+
" 6,\n",
|
1023 |
+
" 4,\n",
|
1024 |
+
" 6,\n",
|
1025 |
+
" 4,\n",
|
1026 |
+
" 6,\n",
|
1027 |
+
" 0,\n",
|
1028 |
+
" 0,\n",
|
1029 |
+
" 2,\n",
|
1030 |
+
" 3,\n",
|
1031 |
+
" 6,\n",
|
1032 |
+
" 2,\n",
|
1033 |
+
" 2,\n",
|
1034 |
+
" 6,\n",
|
1035 |
+
" 6,\n",
|
1036 |
+
" 2,\n",
|
1037 |
+
" 4,\n",
|
1038 |
+
" 3,\n",
|
1039 |
+
" 3,\n",
|
1040 |
+
" 6,\n",
|
1041 |
+
" 7,\n",
|
1042 |
+
" 7,\n",
|
1043 |
+
" 1,\n",
|
1044 |
+
" 1,\n",
|
1045 |
+
" 7,\n",
|
1046 |
+
" 7,\n",
|
1047 |
+
" 6,\n",
|
1048 |
+
" 1,\n",
|
1049 |
+
" 7,\n",
|
1050 |
+
" 0,\n",
|
1051 |
+
" 0,\n",
|
1052 |
+
" 2,\n",
|
1053 |
+
" 4,\n",
|
1054 |
+
" 2,\n",
|
1055 |
+
" 2,\n",
|
1056 |
+
" 3,\n",
|
1057 |
+
" 0,\n",
|
1058 |
+
" 1,\n",
|
1059 |
+
" 4,\n",
|
1060 |
+
" 0,\n",
|
1061 |
+
" 4,\n",
|
1062 |
+
" 6,\n",
|
1063 |
+
" 5,\n",
|
1064 |
+
" 3,\n",
|
1065 |
+
" 2,\n",
|
1066 |
+
" 3,\n",
|
1067 |
+
" 2,\n",
|
1068 |
+
" 3,\n",
|
1069 |
+
" 6,\n",
|
1070 |
+
" 2,\n",
|
1071 |
+
" 1,\n",
|
1072 |
+
" 4,\n",
|
1073 |
+
" 7,\n",
|
1074 |
+
" 6,\n",
|
1075 |
+
" 4,\n",
|
1076 |
+
" 5,\n",
|
1077 |
+
" 6,\n",
|
1078 |
+
" 7,\n",
|
1079 |
+
" 7,\n",
|
1080 |
+
" 2,\n",
|
1081 |
+
" 0,\n",
|
1082 |
+
" 5,\n",
|
1083 |
+
" 5,\n",
|
1084 |
+
" 0,\n",
|
1085 |
+
" 3,\n",
|
1086 |
+
" 6,\n",
|
1087 |
+
" 6,\n",
|
1088 |
+
" 5,\n",
|
1089 |
+
" 4,\n",
|
1090 |
+
" 4,\n",
|
1091 |
+
" 7,\n",
|
1092 |
+
" 0,\n",
|
1093 |
+
" 5,\n",
|
1094 |
+
" 1,\n",
|
1095 |
+
" 7,\n",
|
1096 |
+
" 0,\n",
|
1097 |
+
" 3,\n",
|
1098 |
+
" 1,\n",
|
1099 |
+
" 7,\n",
|
1100 |
+
" 0,\n",
|
1101 |
+
" 1,\n",
|
1102 |
+
" 4,\n",
|
1103 |
+
" 7,\n",
|
1104 |
+
" 5,\n",
|
1105 |
+
" 0,\n",
|
1106 |
+
" 4,\n",
|
1107 |
+
" 0,\n",
|
1108 |
+
" 0,\n",
|
1109 |
+
" 1,\n",
|
1110 |
+
" 0,\n",
|
1111 |
+
" 6,\n",
|
1112 |
+
" 4,\n",
|
1113 |
+
" 0,\n",
|
1114 |
+
" 5,\n",
|
1115 |
+
" 4,\n",
|
1116 |
+
" 6,\n",
|
1117 |
+
" 6,\n",
|
1118 |
+
" 7,\n",
|
1119 |
+
" 2,\n",
|
1120 |
+
" 6,\n",
|
1121 |
+
" 2,\n",
|
1122 |
+
" 6,\n",
|
1123 |
+
" 0,\n",
|
1124 |
+
" 3,\n",
|
1125 |
+
" 2,\n",
|
1126 |
+
" 2,\n",
|
1127 |
+
" 1,\n",
|
1128 |
+
" 5,\n",
|
1129 |
+
" 4,\n",
|
1130 |
+
" 7,\n",
|
1131 |
+
" 6,\n",
|
1132 |
+
" 6,\n",
|
1133 |
+
" 2,\n",
|
1134 |
+
" 5,\n",
|
1135 |
+
" 5,\n",
|
1136 |
+
" 5,\n",
|
1137 |
+
" 0,\n",
|
1138 |
+
" 3,\n",
|
1139 |
+
" 5,\n",
|
1140 |
+
" 4,\n",
|
1141 |
+
" 5,\n",
|
1142 |
+
" 7,\n",
|
1143 |
+
" 5,\n",
|
1144 |
+
" 0,\n",
|
1145 |
+
" 5,\n",
|
1146 |
+
" 0,\n",
|
1147 |
+
" 0,\n",
|
1148 |
+
" 2,\n",
|
1149 |
+
" 0,\n",
|
1150 |
+
" 2,\n",
|
1151 |
+
" 1,\n",
|
1152 |
+
" 0,\n",
|
1153 |
+
" 2,\n",
|
1154 |
+
" 4,\n",
|
1155 |
+
" 3,\n",
|
1156 |
+
" 4,\n",
|
1157 |
+
" 1,\n",
|
1158 |
+
" 7,\n",
|
1159 |
+
" 2,\n",
|
1160 |
+
" 1,\n",
|
1161 |
+
" 0,\n",
|
1162 |
+
" 3,\n",
|
1163 |
+
" 0,\n",
|
1164 |
+
" 3,\n",
|
1165 |
+
" 1,\n",
|
1166 |
+
" 1,\n",
|
1167 |
+
" 0,\n",
|
1168 |
+
" 5,\n",
|
1169 |
+
" 3,\n",
|
1170 |
+
" 1,\n",
|
1171 |
+
" 2,\n",
|
1172 |
+
" 5,\n",
|
1173 |
+
" 6,\n",
|
1174 |
+
" 7,\n",
|
1175 |
+
" 6,\n",
|
1176 |
+
" 7,\n",
|
1177 |
+
" 0,\n",
|
1178 |
+
" 2,\n",
|
1179 |
+
" 6,\n",
|
1180 |
+
" 3,\n",
|
1181 |
+
" 1,\n",
|
1182 |
+
" 5,\n",
|
1183 |
+
" 4,\n",
|
1184 |
+
" 2,\n",
|
1185 |
+
" 4,\n",
|
1186 |
+
" 6,\n",
|
1187 |
+
" 5,\n",
|
1188 |
+
" 2,\n",
|
1189 |
+
" 7,\n",
|
1190 |
+
" ...]"
|
1191 |
+
]
|
1192 |
+
},
|
1193 |
+
"execution_count": 6,
|
1194 |
+
"metadata": {},
|
1195 |
+
"output_type": "execute_result"
|
1196 |
+
}
|
1197 |
+
],
|
1198 |
+
"source": [
|
1199 |
+
"\n",
|
1200 |
+
"#--------------------------------------------------------------------------------------------\n",
|
1201 |
+
"# YOUR MODEL INFERENCE CODE HERE\n",
|
1202 |
+
"# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
|
1203 |
+
"#-------------------------------------------------------------------------------------------- \n",
|
1204 |
+
"\n",
|
1205 |
+
"# Make random predictions (placeholder for actual model inference)\n",
|
1206 |
+
"true_labels = test_dataset[\"label\"]\n",
|
1207 |
+
"predictions = [random.randint(0, 7) for _ in range(len(true_labels))]\n",
|
1208 |
+
"\n",
|
1209 |
+
"predictions\n",
|
1210 |
+
"\n",
|
1211 |
+
"#--------------------------------------------------------------------------------------------\n",
|
1212 |
+
"# YOUR MODEL INFERENCE STOPS HERE\n",
|
1213 |
+
"#-------------------------------------------------------------------------------------------- "
|
1214 |
+
]
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"cell_type": "code",
|
1218 |
+
"execution_count": 8,
|
1219 |
+
"metadata": {},
|
1220 |
+
"outputs": [
|
1221 |
+
{
|
1222 |
+
"name": "stderr",
|
1223 |
+
"output_type": "stream",
|
1224 |
+
"text": [
|
1225 |
+
"[codecarbon WARNING @ 19:53:32] Background scheduler didn't run for a long period (47s), results might be inaccurate\n",
|
1226 |
+
"[codecarbon INFO @ 19:53:32] Energy consumed for RAM : 0.000156 kWh. RAM Power : 11.755242347717285 W\n",
|
1227 |
+
"[codecarbon INFO @ 19:53:32] Delta energy consumed for CPU with constant : 0.000564 kWh, power : 42.5 W\n",
|
1228 |
+
"[codecarbon INFO @ 19:53:32] Energy consumed for All CPU : 0.000564 kWh\n",
|
1229 |
+
"[codecarbon INFO @ 19:53:32] 0.000720 kWh of electricity used since the beginning.\n"
|
1230 |
+
]
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"data": {
|
1234 |
+
"text/plain": [
|
1235 |
+
"EmissionsData(timestamp='2025-01-21T19:53:32', project_name='codecarbon', run_id='908f2e7e-4bb2-4991-a0f6-56bf8d7eda21', experiment_id='5b0fa12a-3dd7-45bb-9766-cc326314d9f1', duration=47.736408500000834, emissions=4.032368007471064e-05, emissions_rate=8.444466886328872e-07, cpu_power=42.5, gpu_power=0.0, ram_power=11.755242347717285, cpu_energy=0.0005636615353475565, gpu_energy=0, ram_energy=0.00015590305493261682, energy_consumed=0.0007195645902801733, country_name='France', country_iso_code='FRA', region='île-de-france', cloud_provider='', cloud_region='', os='Windows-11-10.0.22631-SP0', python_version='3.12.7', codecarbon_version='3.0.0_rc0', cpu_count=12, cpu_model='13th Gen Intel(R) Core(TM) i7-1365U', gpu_count=None, gpu_model=None, longitude=2.3494, latitude=48.8558, ram_total_size=31.347312927246094, tracking_mode='machine', on_cloud='N', pue=1.0)"
|
1236 |
+
]
|
1237 |
+
},
|
1238 |
+
"execution_count": 8,
|
1239 |
+
"metadata": {},
|
1240 |
+
"output_type": "execute_result"
|
1241 |
+
}
|
1242 |
+
],
|
1243 |
+
"source": [
|
1244 |
+
"# Stop tracking emissions\n",
|
1245 |
+
"emissions_data = tracker.stop_task()\n",
|
1246 |
+
"emissions_data"
|
1247 |
+
]
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"cell_type": "code",
|
1251 |
+
"execution_count": 9,
|
1252 |
+
"metadata": {},
|
1253 |
+
"outputs": [
|
1254 |
+
{
|
1255 |
+
"data": {
|
1256 |
+
"text/plain": [
|
1257 |
+
"0.10090237899917966"
|
1258 |
+
]
|
1259 |
+
},
|
1260 |
+
"execution_count": 9,
|
1261 |
+
"metadata": {},
|
1262 |
+
"output_type": "execute_result"
|
1263 |
+
}
|
1264 |
+
],
|
1265 |
+
"source": [
|
1266 |
+
"# Calculate accuracy\n",
|
1267 |
+
"accuracy = accuracy_score(true_labels, predictions)\n",
|
1268 |
+
"accuracy"
|
1269 |
+
]
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"cell_type": "code",
|
1273 |
+
"execution_count": 10,
|
1274 |
+
"metadata": {},
|
1275 |
+
"outputs": [
|
1276 |
+
{
|
1277 |
+
"data": {
|
1278 |
+
"text/plain": [
|
1279 |
+
"{'submission_timestamp': '2025-01-21T19:53:46.639165',\n",
|
1280 |
+
" 'accuracy': 0.10090237899917966,\n",
|
1281 |
+
" 'energy_consumed_wh': 0.7195645902801733,\n",
|
1282 |
+
" 'emissions_gco2eq': 0.040323680074710634,\n",
|
1283 |
+
" 'emissions_data': {'run_id': '908f2e7e-4bb2-4991-a0f6-56bf8d7eda21',\n",
|
1284 |
+
" 'duration': 47.736408500000834,\n",
|
1285 |
+
" 'emissions': 4.032368007471064e-05,\n",
|
1286 |
+
" 'emissions_rate': 8.444466886328872e-07,\n",
|
1287 |
+
" 'cpu_power': 42.5,\n",
|
1288 |
+
" 'gpu_power': 0.0,\n",
|
1289 |
+
" 'ram_power': 11.755242347717285,\n",
|
1290 |
+
" 'cpu_energy': 0.0005636615353475565,\n",
|
1291 |
+
" 'gpu_energy': 0,\n",
|
1292 |
+
" 'ram_energy': 0.00015590305493261682,\n",
|
1293 |
+
" 'energy_consumed': 0.0007195645902801733,\n",
|
1294 |
+
" 'country_name': 'France',\n",
|
1295 |
+
" 'country_iso_code': 'FRA',\n",
|
1296 |
+
" 'region': 'île-de-france',\n",
|
1297 |
+
" 'cloud_provider': '',\n",
|
1298 |
+
" 'cloud_region': '',\n",
|
1299 |
+
" 'os': 'Windows-11-10.0.22631-SP0',\n",
|
1300 |
+
" 'python_version': '3.12.7',\n",
|
1301 |
+
" 'codecarbon_version': '3.0.0_rc0',\n",
|
1302 |
+
" 'cpu_count': 12,\n",
|
1303 |
+
" 'cpu_model': '13th Gen Intel(R) Core(TM) i7-1365U',\n",
|
1304 |
+
" 'gpu_count': None,\n",
|
1305 |
+
" 'gpu_model': None,\n",
|
1306 |
+
" 'ram_total_size': 31.347312927246094,\n",
|
1307 |
+
" 'tracking_mode': 'machine',\n",
|
1308 |
+
" 'on_cloud': 'N',\n",
|
1309 |
+
" 'pue': 1.0},\n",
|
1310 |
+
" 'dataset_config': {'dataset_name': 'QuotaClimat/frugalaichallenge-text-train',\n",
|
1311 |
+
" 'test_size': 0.2,\n",
|
1312 |
+
" 'test_seed': 42}}"
|
1313 |
+
]
|
1314 |
+
},
|
1315 |
+
"execution_count": 10,
|
1316 |
+
"metadata": {},
|
1317 |
+
"output_type": "execute_result"
|
1318 |
+
}
|
1319 |
+
],
|
1320 |
+
"source": [
|
1321 |
+
"# Prepare results dictionary\n",
|
1322 |
+
"results = {\n",
|
1323 |
+
" \"submission_timestamp\": datetime.now().isoformat(),\n",
|
1324 |
+
" \"accuracy\": float(accuracy),\n",
|
1325 |
+
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
|
1326 |
+
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
|
1327 |
+
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
|
1328 |
+
" \"dataset_config\": {\n",
|
1329 |
+
" \"dataset_name\": request.dataset_name,\n",
|
1330 |
+
" \"test_size\": request.test_size,\n",
|
1331 |
+
" \"test_seed\": request.test_seed\n",
|
1332 |
+
" }\n",
|
1333 |
+
"}\n",
|
1334 |
+
"\n",
|
1335 |
+
"results"
|
1336 |
+
]
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"cell_type": "markdown",
|
1340 |
+
"metadata": {},
|
1341 |
+
"source": [
|
1342 |
+
"## Development of the model"
|
1343 |
+
]
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"cell_type": "code",
|
1347 |
+
"execution_count": 11,
|
1348 |
+
"metadata": {},
|
1349 |
+
"outputs": [
|
1350 |
+
{
|
1351 |
+
"data": {
|
1352 |
+
"application/vnd.jupyter.widget-view+json": {
|
1353 |
+
"model_id": "90f50ab19698484489f36976745efad3",
|
1354 |
+
"version_major": 2,
|
1355 |
+
"version_minor": 0
|
1356 |
+
},
|
1357 |
+
"text/plain": [
|
1358 |
+
"config.json: 0%| | 0.00/1.15k [00:00<?, ?B/s]"
|
1359 |
+
]
|
1360 |
+
},
|
1361 |
+
"metadata": {},
|
1362 |
+
"output_type": "display_data"
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"name": "stderr",
|
1366 |
+
"output_type": "stream",
|
1367 |
+
"text": [
|
1368 |
+
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\models--facebook--bart-large-mnli. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
1369 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
1370 |
+
" warnings.warn(message)\n"
|
1371 |
+
]
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"data": {
|
1375 |
+
"application/vnd.jupyter.widget-view+json": {
|
1376 |
+
"model_id": "6e3974d8ff284603821f7beca9bd353d",
|
1377 |
+
"version_major": 2,
|
1378 |
+
"version_minor": 0
|
1379 |
+
},
|
1380 |
+
"text/plain": [
|
1381 |
+
"model.safetensors: 0%| | 0.00/1.63G [00:00<?, ?B/s]"
|
1382 |
+
]
|
1383 |
+
},
|
1384 |
+
"metadata": {},
|
1385 |
+
"output_type": "display_data"
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"data": {
|
1389 |
+
"application/vnd.jupyter.widget-view+json": {
|
1390 |
+
"model_id": "bc29cb379c644b00b1bdf61d5426d99d",
|
1391 |
+
"version_major": 2,
|
1392 |
+
"version_minor": 0
|
1393 |
+
},
|
1394 |
+
"text/plain": [
|
1395 |
+
"tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
|
1396 |
+
]
|
1397 |
+
},
|
1398 |
+
"metadata": {},
|
1399 |
+
"output_type": "display_data"
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"data": {
|
1403 |
+
"application/vnd.jupyter.widget-view+json": {
|
1404 |
+
"model_id": "635503cf819747c9a83f22aa4f2f11db",
|
1405 |
+
"version_major": 2,
|
1406 |
+
"version_minor": 0
|
1407 |
+
},
|
1408 |
+
"text/plain": [
|
1409 |
+
"vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]"
|
1410 |
+
]
|
1411 |
+
},
|
1412 |
+
"metadata": {},
|
1413 |
+
"output_type": "display_data"
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"data": {
|
1417 |
+
"application/vnd.jupyter.widget-view+json": {
|
1418 |
+
"model_id": "3a5f53e451e8483ca7c33f42245abd13",
|
1419 |
+
"version_major": 2,
|
1420 |
+
"version_minor": 0
|
1421 |
+
},
|
1422 |
+
"text/plain": [
|
1423 |
+
"merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
1424 |
+
]
|
1425 |
+
},
|
1426 |
+
"metadata": {},
|
1427 |
+
"output_type": "display_data"
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"data": {
|
1431 |
+
"application/vnd.jupyter.widget-view+json": {
|
1432 |
+
"model_id": "84f922d1b68a4a0faa5e920d004efca0",
|
1433 |
+
"version_major": 2,
|
1434 |
+
"version_minor": 0
|
1435 |
+
},
|
1436 |
+
"text/plain": [
|
1437 |
+
"tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
1438 |
+
]
|
1439 |
+
},
|
1440 |
+
"metadata": {},
|
1441 |
+
"output_type": "display_data"
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"name": "stderr",
|
1445 |
+
"output_type": "stream",
|
1446 |
+
"text": [
|
1447 |
+
"Device set to use cpu\n"
|
1448 |
+
]
|
1449 |
+
}
|
1450 |
+
],
|
1451 |
+
"source": [
|
1452 |
+
"from transformers import pipeline\n",
|
1453 |
+
"classifier = pipeline(\"zero-shot-classification\",\n",
|
1454 |
+
" model=\"facebook/bart-large-mnli\")\n"
|
1455 |
+
]
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"cell_type": "code",
|
1459 |
+
"execution_count": 14,
|
1460 |
+
"metadata": {},
|
1461 |
+
"outputs": [],
|
1462 |
+
"source": [
|
1463 |
+
"sequence_to_classify = \"one day I will see the world\"\n",
|
1464 |
+
"\n",
|
1465 |
+
"candidate_labels = [\n",
|
1466 |
+
" \"Not related to climate change disinformation\",\n",
|
1467 |
+
" \"Climate change is not real and not happening\",\n",
|
1468 |
+
" \"Climate change is not human-induced\",\n",
|
1469 |
+
" \"Climate change impacts are not that bad\",\n",
|
1470 |
+
" \"Climate change solutions are harmful and unnecessary\",\n",
|
1471 |
+
" \"Climate change science is unreliable\",\n",
|
1472 |
+
" \"Climate change proponents are biased\",\n",
|
1473 |
+
" \"Fossil fuels are needed to address climate change\"\n",
|
1474 |
+
"]"
|
1475 |
+
]
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"cell_type": "code",
|
1479 |
+
"execution_count": 15,
|
1480 |
+
"metadata": {},
|
1481 |
+
"outputs": [
|
1482 |
+
{
|
1483 |
+
"data": {
|
1484 |
+
"text/plain": [
|
1485 |
+
"{'sequence': 'one day I will see the world',\n",
|
1486 |
+
" 'labels': ['Fossil fuels are needed to address climate change',\n",
|
1487 |
+
" 'Climate change science is unreliable',\n",
|
1488 |
+
" 'Not related to climate change disinformation',\n",
|
1489 |
+
" 'Climate change proponents are biased',\n",
|
1490 |
+
" 'Climate change impacts are not that bad',\n",
|
1491 |
+
" 'Climate change solutions are harmful and unnecessary',\n",
|
1492 |
+
" 'Climate change is not human-induced',\n",
|
1493 |
+
" 'Climate change is not real and not happening'],\n",
|
1494 |
+
" 'scores': [0.16242119669914246,\n",
|
1495 |
+
" 0.15683825314044952,\n",
|
1496 |
+
" 0.1564282774925232,\n",
|
1497 |
+
" 0.14603719115257263,\n",
|
1498 |
+
" 0.12794046103954315,\n",
|
1499 |
+
" 0.10180754214525223,\n",
|
1500 |
+
" 0.0936085507273674,\n",
|
1501 |
+
" 0.0549185685813427]}"
|
1502 |
+
]
|
1503 |
+
},
|
1504 |
+
"execution_count": 15,
|
1505 |
+
"metadata": {},
|
1506 |
+
"output_type": "execute_result"
|
1507 |
+
}
|
1508 |
+
],
|
1509 |
+
"source": [
|
1510 |
+
"classifier(sequence_to_classify, candidate_labels)"
|
1511 |
+
]
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"cell_type": "code",
|
1515 |
+
"execution_count": 26,
|
1516 |
+
"metadata": {},
|
1517 |
+
"outputs": [
|
1518 |
+
{
|
1519 |
+
"name": "stderr",
|
1520 |
+
"output_type": "stream",
|
1521 |
+
"text": [
|
1522 |
+
"[codecarbon WARNING @ 11:00:07] Already started tracking\n"
|
1523 |
+
]
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"data": {
|
1527 |
+
"application/vnd.jupyter.widget-view+json": {
|
1528 |
+
"model_id": "5d66a13f76a4411d95b62d4a73012495",
|
1529 |
+
"version_major": 2,
|
1530 |
+
"version_minor": 0
|
1531 |
+
},
|
1532 |
+
"text/plain": [
|
1533 |
+
"0it [00:00, ?it/s]"
|
1534 |
+
]
|
1535 |
+
},
|
1536 |
+
"metadata": {},
|
1537 |
+
"output_type": "display_data"
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"name": "stderr",
|
1541 |
+
"output_type": "stream",
|
1542 |
+
"text": [
|
1543 |
+
"[codecarbon WARNING @ 11:05:57] Background scheduler didn't run for a long period (349s), results might be inaccurate\n",
|
1544 |
+
"[codecarbon INFO @ 11:05:57] Energy consumed for RAM : 0.018069 kWh. RAM Power : 11.755242347717285 W\n",
|
1545 |
+
"[codecarbon INFO @ 11:05:57] Delta energy consumed for CPU with constant : 0.004122 kWh, power : 42.5 W\n",
|
1546 |
+
"[codecarbon INFO @ 11:05:57] Energy consumed for All CPU : 0.065327 kWh\n",
|
1547 |
+
"[codecarbon INFO @ 11:05:57] 0.083395 kWh of electricity used since the beginning.\n"
|
1548 |
+
]
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"data": {
|
1552 |
+
"text/plain": [
|
1553 |
+
"EmissionsData(timestamp='2025-01-22T11:05:57', project_name='codecarbon', run_id='908f2e7e-4bb2-4991-a0f6-56bf8d7eda21', experiment_id='5b0fa12a-3dd7-45bb-9766-cc326314d9f1', duration=349.19709450000664, emissions=0.0002949120266226386, emissions_rate=8.445461750018632e-07, cpu_power=42.5, gpu_power=0.0, ram_power=11.755242347717285, cpu_energy=0.004122396676597424, gpu_energy=0, ram_energy=0.0011402244733631148, energy_consumed=0.005262621149960539, country_name='France', country_iso_code='FRA', region='île-de-france', cloud_provider='', cloud_region='', os='Windows-11-10.0.22631-SP0', python_version='3.12.7', codecarbon_version='3.0.0_rc0', cpu_count=12, cpu_model='13th Gen Intel(R) Core(TM) i7-1365U', gpu_count=None, gpu_model=None, longitude=2.3494, latitude=48.8558, ram_total_size=31.347312927246094, tracking_mode='machine', on_cloud='N', pue=1.0)"
|
1554 |
+
]
|
1555 |
+
},
|
1556 |
+
"execution_count": 26,
|
1557 |
+
"metadata": {},
|
1558 |
+
"output_type": "execute_result"
|
1559 |
+
}
|
1560 |
+
],
|
1561 |
+
"source": [
|
1562 |
+
"# Start tracking emissions\n",
|
1563 |
+
"tracker.start()\n",
|
1564 |
+
"tracker.start_task(\"inference\")\n",
|
1565 |
+
"\n",
|
1566 |
+
"from tqdm.auto import tqdm\n",
|
1567 |
+
"predictions = []\n",
|
1568 |
+
"\n",
|
1569 |
+
"\n",
|
1570 |
+
"\n",
|
1571 |
+
"# Option 1: Simple loop approach\n",
|
1572 |
+
"\n",
|
1573 |
+
"for i, text in tqdm(enumerate(test_dataset[\"quote\"])):\n",
|
1574 |
+
"\n",
|
1575 |
+
" result = classifier(text, candidate_labels)\n",
|
1576 |
+
"\n",
|
1577 |
+
" # Get index of highest scoring label\n",
|
1578 |
+
"\n",
|
1579 |
+
" pred_label = candidate_labels.index(result[\"labels\"][0])\n",
|
1580 |
+
"\n",
|
1581 |
+
" predictions.append(pred_label)\n",
|
1582 |
+
" if i == 100:\n",
|
1583 |
+
" break\n",
|
1584 |
+
"\n",
|
1585 |
+
"\n",
|
1586 |
+
"# Stop tracking emissions\n",
|
1587 |
+
"emissions_data = tracker.stop_task()\n",
|
1588 |
+
"emissions_data\n"
|
1589 |
+
]
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"cell_type": "code",
|
1593 |
+
"execution_count": 28,
|
1594 |
+
"metadata": {},
|
1595 |
+
"outputs": [
|
1596 |
+
{
|
1597 |
+
"data": {
|
1598 |
+
"text/plain": [
|
1599 |
+
"0.4"
|
1600 |
+
]
|
1601 |
+
},
|
1602 |
+
"execution_count": 28,
|
1603 |
+
"metadata": {},
|
1604 |
+
"output_type": "execute_result"
|
1605 |
+
}
|
1606 |
+
],
|
1607 |
+
"source": [
|
1608 |
+
"# Calculate accuracy\n",
|
1609 |
+
"accuracy = accuracy_score(true_labels[:100], predictions[:100])\n",
|
1610 |
+
"accuracy"
|
1611 |
+
]
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"cell_type": "code",
|
1615 |
+
"execution_count": null,
|
1616 |
+
"metadata": {},
|
1617 |
+
"outputs": [],
|
1618 |
+
"source": []
|
1619 |
+
}
|
1620 |
+
],
|
1621 |
+
"metadata": {
|
1622 |
+
"kernelspec": {
|
1623 |
+
"display_name": "base",
|
1624 |
+
"language": "python",
|
1625 |
+
"name": "python3"
|
1626 |
+
},
|
1627 |
+
"language_info": {
|
1628 |
+
"codemirror_mode": {
|
1629 |
+
"name": "ipython",
|
1630 |
+
"version": 3
|
1631 |
+
},
|
1632 |
+
"file_extension": ".py",
|
1633 |
+
"mimetype": "text/x-python",
|
1634 |
+
"name": "python",
|
1635 |
+
"nbconvert_exporter": "python",
|
1636 |
+
"pygments_lexer": "ipython3",
|
1637 |
+
"version": "3.12.7"
|
1638 |
+
}
|
1639 |
+
},
|
1640 |
+
"nbformat": 4,
|
1641 |
+
"nbformat_minor": 2
|
1642 |
+
}
|
requirements.txt
CHANGED
@@ -7,4 +7,8 @@ pydantic>=1.10.0
|
|
7 |
python-dotenv>=1.0.0
|
8 |
gradio>=4.0.0
|
9 |
requests>=2.31.0
|
10 |
-
librosa==0.10.2.post1
|
|
|
|
|
|
|
|
|
|
7 |
python-dotenv>=1.0.0
|
8 |
gradio>=4.0.0
|
9 |
requests>=2.31.0
|
10 |
+
librosa==0.10.2.post1
|
11 |
+
tf-keras
|
12 |
+
tensorflow[and-cuda]>=2.0
|
13 |
+
evaluate
|
14 |
+
transformers
|
tasks/audio.py
CHANGED
@@ -6,7 +6,7 @@ import random
|
|
6 |
import os
|
7 |
|
8 |
from .utils.evaluation import AudioEvaluationRequest
|
9 |
-
from .utils.emissions import
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
load_dotenv()
|
@@ -45,6 +45,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
45 |
test_dataset = train_test["test"]
|
46 |
|
47 |
# Start tracking emissions
|
|
|
48 |
tracker.start()
|
49 |
tracker.start_task("inference")
|
50 |
|
@@ -85,4 +86,4 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
85 |
}
|
86 |
}
|
87 |
|
88 |
-
return results
|
|
|
6 |
import os
|
7 |
|
8 |
from .utils.evaluation import AudioEvaluationRequest
|
9 |
+
from .utils.emissions import get_tracker, clean_emissions_data, get_space_info
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
load_dotenv()
|
|
|
45 |
test_dataset = train_test["test"]
|
46 |
|
47 |
# Start tracking emissions
|
48 |
+
tracker = get_tracker()
|
49 |
tracker.start()
|
50 |
tracker.start_task("inference")
|
51 |
|
|
|
86 |
}
|
87 |
}
|
88 |
|
89 |
+
return results
|
tasks/data/__init__.py
ADDED
File without changes
|
tasks/data/data_loaders.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
from datasets import load_dataset, DatasetDict
|
4 |
+
|
5 |
+
from tasks.utils.evaluation import TextEvaluationRequest
|
6 |
+
|
7 |
+
|
8 |
+
class DataLoader(ABC):
|
9 |
+
@abstractmethod
|
10 |
+
def get_train_dataset(self):
|
11 |
+
pass
|
12 |
+
|
13 |
+
@abstractmethod
|
14 |
+
def get_test_dataset(self):
|
15 |
+
pass
|
16 |
+
|
17 |
+
class TextDataLoader(DataLoader):
|
18 |
+
def __init__(self, request: TextEvaluationRequest = TextEvaluationRequest(), light: bool = False):
|
19 |
+
self.label_mapping = {
|
20 |
+
"0_not_relevant": 0,
|
21 |
+
"1_not_happening": 1,
|
22 |
+
"2_not_human": 2,
|
23 |
+
"3_not_bad": 3,
|
24 |
+
"4_solutions_harmful_unnecessary": 4,
|
25 |
+
"5_science_unreliable": 5,
|
26 |
+
"6_proponents_biased": 6,
|
27 |
+
"7_fossil_fuels_needed": 7
|
28 |
+
}
|
29 |
+
# Load the dataset, and convert string labels to integers
|
30 |
+
dataset = load_dataset(request.dataset_name)
|
31 |
+
dataset = dataset.map(lambda x: {"label": self.label_mapping[x["label"]]})
|
32 |
+
self.dataset = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
33 |
+
|
34 |
+
# Create a smaller version of the dataset for quick testing
|
35 |
+
if light:
|
36 |
+
self.dataset = DatasetDict({
|
37 |
+
"train": self.dataset["train"].shuffle(seed=42).select(range(10)),
|
38 |
+
"test": self.dataset["test"].shuffle(seed=42).select(range(2))
|
39 |
+
})
|
40 |
+
|
41 |
+
def get_train_dataset(self):
|
42 |
+
return self.dataset["train"]
|
43 |
+
|
44 |
+
def get_test_dataset(self):
|
45 |
+
return self.dataset["test"]
|
46 |
+
|
47 |
+
def get_label_to_id_mapping(self):
|
48 |
+
return self.label_mapping
|
49 |
+
|
50 |
+
def get_id_to_label_mapping(self):
|
51 |
+
return {v: k for k, v in self.label_mapping.items()}
|
tasks/image.py
CHANGED
@@ -2,12 +2,12 @@ from fastapi import APIRouter
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
import numpy as np
|
5 |
-
from sklearn.metrics import accuracy_score
|
6 |
import random
|
7 |
import os
|
8 |
|
9 |
from .utils.evaluation import ImageEvaluationRequest
|
10 |
-
from .utils.emissions import
|
11 |
|
12 |
from dotenv import load_dotenv
|
13 |
load_dotenv()
|
@@ -92,6 +92,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
92 |
test_dataset = train_test["test"]
|
93 |
|
94 |
# Start tracking emissions
|
|
|
95 |
tracker.start()
|
96 |
tracker.start_task("inference")
|
97 |
|
@@ -138,8 +139,10 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
138 |
# Stop tracking emissions
|
139 |
emissions_data = tracker.stop_task()
|
140 |
|
141 |
-
# Calculate classification
|
142 |
classification_accuracy = accuracy_score(true_labels, predictions)
|
|
|
|
|
143 |
|
144 |
# Calculate mean IoU for object detection (only for images with smoke)
|
145 |
# For each image, we compute the max IoU between the predicted box and all true boxes
|
@@ -157,6 +160,8 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
157 |
"submission_timestamp": datetime.now().isoformat(),
|
158 |
"model_description": DESCRIPTION,
|
159 |
"classification_accuracy": float(classification_accuracy),
|
|
|
|
|
160 |
"mean_iou": mean_iou,
|
161 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
162 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
@@ -169,4 +174,4 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
169 |
}
|
170 |
}
|
171 |
|
172 |
-
return results
|
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
import numpy as np
|
5 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
6 |
import random
|
7 |
import os
|
8 |
|
9 |
from .utils.evaluation import ImageEvaluationRequest
|
10 |
+
from .utils.emissions import get_tracker, clean_emissions_data, get_space_info
|
11 |
|
12 |
from dotenv import load_dotenv
|
13 |
load_dotenv()
|
|
|
92 |
test_dataset = train_test["test"]
|
93 |
|
94 |
# Start tracking emissions
|
95 |
+
tracker = get_tracker()
|
96 |
tracker.start()
|
97 |
tracker.start_task("inference")
|
98 |
|
|
|
139 |
# Stop tracking emissions
|
140 |
emissions_data = tracker.stop_task()
|
141 |
|
142 |
+
# Calculate classification metrics
|
143 |
classification_accuracy = accuracy_score(true_labels, predictions)
|
144 |
+
classification_precision = precision_score(true_labels, predictions)
|
145 |
+
classification_recall = recall_score(true_labels, predictions)
|
146 |
|
147 |
# Calculate mean IoU for object detection (only for images with smoke)
|
148 |
# For each image, we compute the max IoU between the predicted box and all true boxes
|
|
|
160 |
"submission_timestamp": datetime.now().isoformat(),
|
161 |
"model_description": DESCRIPTION,
|
162 |
"classification_accuracy": float(classification_accuracy),
|
163 |
+
"classification_precision": float(classification_precision),
|
164 |
+
"classification_recall": float(classification_recall),
|
165 |
"mean_iou": mean_iou,
|
166 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
167 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
|
|
174 |
}
|
175 |
}
|
176 |
|
177 |
+
return results
|
tasks/models/__init__.py
ADDED
File without changes
|
tasks/models/pretrained_models/2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased/config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "0_not_relevant",
|
13 |
+
"1": "1_not_happening",
|
14 |
+
"2": "2_not_human",
|
15 |
+
"3": "3_not_bad",
|
16 |
+
"4": "4_solutions_harmful_unnecessary",
|
17 |
+
"5": "5_science_unreliable",
|
18 |
+
"6": "6_proponents_biased",
|
19 |
+
"7": "7_fossil_fuels_needed"
|
20 |
+
},
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"label2id": {
|
23 |
+
"0_not_relevant": 0,
|
24 |
+
"1_not_happening": 1,
|
25 |
+
"2_not_human": 2,
|
26 |
+
"3_not_bad": 3,
|
27 |
+
"4_solutions_harmful_unnecessary": 4,
|
28 |
+
"5_science_unreliable": 5,
|
29 |
+
"6_proponents_biased": 6,
|
30 |
+
"7_fossil_fuels_needed": 7
|
31 |
+
},
|
32 |
+
"max_position_embeddings": 512,
|
33 |
+
"model_type": "distilbert",
|
34 |
+
"n_heads": 12,
|
35 |
+
"n_layers": 6,
|
36 |
+
"pad_token_id": 0,
|
37 |
+
"qa_dropout": 0.1,
|
38 |
+
"seq_classif_dropout": 0.2,
|
39 |
+
"sinusoidal_pos_embds": false,
|
40 |
+
"tie_weights_": true,
|
41 |
+
"transformers_version": "4.48.1",
|
42 |
+
"vocab_size": 30522
|
43 |
+
}
|
tasks/models/pretrained_models/2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased/config_training.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "distilbert",
|
3 |
+
"model_name": "distilbert-base-uncased",
|
4 |
+
"batch_size": 32,
|
5 |
+
"num_epochs": 10,
|
6 |
+
"initial_learning_rate": 2e-05,
|
7 |
+
"description": "DistilBERT Model (fined-tuned from distilbert-base-uncased)"
|
8 |
+
}
|
tasks/models/pretrained_models/2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased/tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:591192ddd9bcff8168d045251b3962050cfec081700cd516e24d37f348866125
|
3 |
+
size 267970240
|
tasks/models/text_classifiers.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
from datetime import datetime
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import joblib
|
8 |
+
import numpy as np
|
9 |
+
import tensorflow as tf
|
10 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
11 |
+
from sklearn.linear_model import LogisticRegression
|
12 |
+
from transformers import AutoTokenizer, DataCollatorWithPadding, create_optimizer, TFAutoModelForSequenceClassification, \
|
13 |
+
KerasMetricCallback
|
14 |
+
import evaluate
|
15 |
+
|
16 |
+
from tasks.data.data_loaders import TextDataLoader
|
17 |
+
|
18 |
+
class PredictionModel(ABC):
|
19 |
+
def __init__(self, data_loader: TextDataLoader = TextDataLoader()):
|
20 |
+
self.description = ""
|
21 |
+
self.model = None
|
22 |
+
|
23 |
+
@abstractmethod
|
24 |
+
def predict(self, quote: str) -> int:
|
25 |
+
"""
|
26 |
+
Predict the label for a given quote.
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
-----------
|
30 |
+
quote: str
|
31 |
+
The quote to classify.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
--------
|
35 |
+
int
|
36 |
+
The predicted label (0-7).
|
37 |
+
"""
|
38 |
+
pass
|
39 |
+
|
40 |
+
@abstractmethod
|
41 |
+
def train(self, dataset) -> None:
|
42 |
+
"""
|
43 |
+
Train the model on a given dataset.
|
44 |
+
|
45 |
+
Parameters:
|
46 |
+
-----------
|
47 |
+
dataset:
|
48 |
+
The dataset to train on.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
--------
|
52 |
+
None
|
53 |
+
"""
|
54 |
+
pass
|
55 |
+
|
56 |
+
@abstractmethod
|
57 |
+
def save_to_directory(self, directory: Path) -> None:
|
58 |
+
pass
|
59 |
+
|
60 |
+
def save(self) -> None:
|
61 |
+
save_directory = Path(__file__).parent / "pretrained_models"
|
62 |
+
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
63 |
+
sanitized_description = (((self.description.
|
64 |
+
replace(" ", "_")).
|
65 |
+
replace("(", "")).
|
66 |
+
replace(")", ""))
|
67 |
+
save_filename = f"{timestamp}_{sanitized_description}"
|
68 |
+
self.save_to_directory(save_directory / save_filename)
|
69 |
+
|
70 |
+
|
71 |
+
class BaselineModel(PredictionModel):
|
72 |
+
def __init__(self, data_loader: TextDataLoader = TextDataLoader()):
|
73 |
+
super().__init__()
|
74 |
+
self.description = "Random Baseline (with Strategy Pattern, from another module)"
|
75 |
+
|
76 |
+
def predict(self, quote: str) -> int:
|
77 |
+
return random.randint(0, 7)
|
78 |
+
|
79 |
+
def train(self, dataset):
|
80 |
+
pass
|
81 |
+
|
82 |
+
def save_to_directory(self, directory: Path) -> None:
|
83 |
+
pass
|
84 |
+
|
85 |
+
class DistilBERTModel(PredictionModel):
|
86 |
+
def __init__(self,
|
87 |
+
data_loader: TextDataLoader = TextDataLoader(),
|
88 |
+
batch_size: int = 4,
|
89 |
+
num_epochs: int = 5,
|
90 |
+
initial_learning_rate: float = 2e-5,
|
91 |
+
start_model_name: str = "distilbert-base-uncased"):
|
92 |
+
super().__init__()
|
93 |
+
self.start_model_name = start_model_name
|
94 |
+
self.description = f"DistilBERT Model (fined-tuned from {self.start_model_name})"
|
95 |
+
self.label_to_id_mapping = data_loader.get_label_to_id_mapping()
|
96 |
+
self.id_to_label_mapping = data_loader.get_id_to_label_mapping()
|
97 |
+
|
98 |
+
# tokenizer
|
99 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.start_model_name)
|
100 |
+
|
101 |
+
# data collator with dynamic padding
|
102 |
+
self.data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, return_tensors="tf")
|
103 |
+
|
104 |
+
# load accuracy metric
|
105 |
+
self.accuracy = evaluate.load("accuracy")
|
106 |
+
|
107 |
+
# training parameters
|
108 |
+
self.batch_size = batch_size
|
109 |
+
self.num_epochs = num_epochs
|
110 |
+
self.initial_learning_rate = initial_learning_rate
|
111 |
+
|
112 |
+
def predict(self, quote: str) -> int:
|
113 |
+
if self.model is None:
|
114 |
+
raise ValueError("Model has not been trained yet. Please train the model before making predictions.")
|
115 |
+
|
116 |
+
inputs = self.tokenizer(quote, return_tensors="tf", truncation=True, max_length=128)
|
117 |
+
outputs = self.model(**inputs)
|
118 |
+
logits = outputs.logits
|
119 |
+
probabilities = tf.nn.softmax(logits)
|
120 |
+
predicted_label = self.model.config.id2label[tf.argmax(probabilities, axis=1).numpy()[0]]
|
121 |
+
return self.label_to_id_mapping[predicted_label]
|
122 |
+
|
123 |
+
def train(self, dataset):
|
124 |
+
# Pre-process data
|
125 |
+
tokenized_data = self.pre_process_data(dataset)
|
126 |
+
|
127 |
+
# Training setup
|
128 |
+
batch_size = self.batch_size
|
129 |
+
num_epochs = self.num_epochs
|
130 |
+
batches_per_epoch = len(tokenized_data["train"]) // batch_size
|
131 |
+
total_train_steps = int(batches_per_epoch * num_epochs)
|
132 |
+
|
133 |
+
# Learning rate scheduler
|
134 |
+
initial_learning_rate = self.initial_learning_rate
|
135 |
+
lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay(
|
136 |
+
initial_learning_rate=initial_learning_rate,
|
137 |
+
decay_steps=total_train_steps,
|
138 |
+
end_learning_rate=0.0,
|
139 |
+
power=1.0
|
140 |
+
)
|
141 |
+
|
142 |
+
# Optimizer with learning rate scheduler
|
143 |
+
optimizer, schedule = create_optimizer(init_lr=initial_learning_rate, num_warmup_steps=0,
|
144 |
+
num_train_steps=total_train_steps)
|
145 |
+
|
146 |
+
# Load model
|
147 |
+
self.model = TFAutoModelForSequenceClassification.from_pretrained(
|
148 |
+
self.start_model_name,
|
149 |
+
num_labels=8,
|
150 |
+
id2label=self.id_to_label_mapping,
|
151 |
+
label2id=self.label_to_id_mapping
|
152 |
+
)
|
153 |
+
|
154 |
+
# Convert datasets to tf.data.Dataset format
|
155 |
+
tf_train_set = self.model.prepare_tf_dataset(
|
156 |
+
tokenized_data["train"],
|
157 |
+
shuffle=True,
|
158 |
+
batch_size=batch_size,
|
159 |
+
collate_fn=self.data_collator,
|
160 |
+
)
|
161 |
+
|
162 |
+
tf_validation_set = self.model.prepare_tf_dataset(
|
163 |
+
tokenized_data["test"],
|
164 |
+
shuffle=False,
|
165 |
+
batch_size=batch_size,
|
166 |
+
collate_fn=self.data_collator,
|
167 |
+
)
|
168 |
+
|
169 |
+
# Compile model
|
170 |
+
self.model.compile(optimizer=optimizer)
|
171 |
+
|
172 |
+
# Keras metric callback
|
173 |
+
metric_callback = KerasMetricCallback(metric_fn=self.compute_metrics, eval_dataset=tf_validation_set)
|
174 |
+
|
175 |
+
# Train model
|
176 |
+
self.model.fit(tf_train_set, validation_data=tf_validation_set, epochs=num_epochs, callbacks=[metric_callback])
|
177 |
+
|
178 |
+
def pre_process_data(self, dataset):
|
179 |
+
return ((dataset.
|
180 |
+
train_test_split(test_size=0.2, seed=42).
|
181 |
+
remove_columns([col for col in dataset.column_names if col not in ["quote", "label"]])).
|
182 |
+
map(self.tokenize))
|
183 |
+
|
184 |
+
def tokenize(self, example):
|
185 |
+
return self.tokenizer(example["quote"], truncation=True, max_length=128)
|
186 |
+
|
187 |
+
def compute_metrics(self, eval_pred):
|
188 |
+
predictions, labels = eval_pred
|
189 |
+
predictions = np.argmax(predictions, axis=1)
|
190 |
+
return self.accuracy.compute(predictions=predictions, references=labels)
|
191 |
+
|
192 |
+
def save_to_directory(self, directory: Path) -> None:
|
193 |
+
self.model.save_pretrained(str(directory))
|
194 |
+
|
195 |
+
class TextEmbedder(ABC):
|
196 |
+
@abstractmethod
|
197 |
+
def encode(self, text: list[str]) -> np.ndarray[float]:
|
198 |
+
"""
|
199 |
+
Encode a list of text inputs into a numpy array.
|
200 |
+
|
201 |
+
Parameters:
|
202 |
+
-----------
|
203 |
+
text: list[str]
|
204 |
+
The text inputs to encode.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
--------
|
208 |
+
np.ndarray
|
209 |
+
The encoded text inputs.
|
210 |
+
"""
|
211 |
+
pass
|
212 |
+
|
213 |
+
def fit(self, param):
|
214 |
+
pass
|
215 |
+
|
216 |
+
@abstractmethod
|
217 |
+
def save_to_directory(self, directory: Path) -> None:
|
218 |
+
pass
|
219 |
+
|
220 |
+
|
221 |
+
class TfIdfEmbedder(TextEmbedder):
|
222 |
+
"""
|
223 |
+
A simple TF-IDF text embedder.
|
224 |
+
|
225 |
+
TF-IDF stands for Term Frequency-Inverse Document Frequency.
|
226 |
+
It can be defined as the calculation of how relevant a word
|
227 |
+
in a series or corpus is to a text. The meaning increases
|
228 |
+
proportionally to the number of times in the text a word
|
229 |
+
appears but is compensated by the word frequency in the corpus
|
230 |
+
(data-set).
|
231 |
+
Source: https://www.geeksforgeeks.org/understanding-tf-idf-term-frequency-inverse-document-frequency/
|
232 |
+
|
233 |
+
The TfidfVectorizer class from scikit-learn is used to encode
|
234 |
+
"""
|
235 |
+
def __init__(self):
|
236 |
+
self.vectorizer = TfidfVectorizer()
|
237 |
+
self._is_fitted = False # Nouveau flag
|
238 |
+
|
239 |
+
def fit(self, text: list[str]):
|
240 |
+
"""Fit the embedder to the given text."""
|
241 |
+
self.vectorizer.fit(text)
|
242 |
+
self._is_fitted = True
|
243 |
+
|
244 |
+
def encode(self, text: list[str]) -> np.ndarray[float]:
|
245 |
+
if not self._is_fitted:
|
246 |
+
raise RuntimeError("TfIdfEmbedder should be fitted before encoding text.")
|
247 |
+
return self.vectorizer.transform(text).toarray()
|
248 |
+
|
249 |
+
def save_to_directory(self, directory: Path) -> None:
|
250 |
+
directory.mkdir(parents=True, exist_ok=True)
|
251 |
+
joblib.dump(self.vectorizer, directory / "tfidf_vectorizer.joblib")
|
252 |
+
|
253 |
+
class MLModel(ABC):
|
254 |
+
@abstractmethod
|
255 |
+
def fit(self, embedded_quotes: np.ndarray[float], y: list[int]) -> None:
|
256 |
+
"""
|
257 |
+
Fit the model to the data.
|
258 |
+
|
259 |
+
Parameters:
|
260 |
+
-----------
|
261 |
+
embedded_quotes: np.ndarray
|
262 |
+
The embedded quotes, given by TextEmbedder.encode().
|
263 |
+
|
264 |
+
y: list[int]
|
265 |
+
The labels (ranging from 0 to 7).
|
266 |
+
"""
|
267 |
+
pass
|
268 |
+
|
269 |
+
@abstractmethod
|
270 |
+
def predict(self, embedded_quotes: np.ndarray[float]) -> int:
|
271 |
+
"""
|
272 |
+
Predict the labels for the given embedded quotes.
|
273 |
+
|
274 |
+
Parameters:
|
275 |
+
-----------
|
276 |
+
embedded_quotes: np.ndarray
|
277 |
+
The embedded quotes, given by TextEmbedder.encode().
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
--------
|
281 |
+
int
|
282 |
+
The predicted labels (ranging from 0 to 7).
|
283 |
+
"""
|
284 |
+
pass
|
285 |
+
|
286 |
+
@abstractmethod
|
287 |
+
def save_to_directory(self, directory: Path) -> None:
|
288 |
+
pass
|
289 |
+
|
290 |
+
class MultivariateLogisticRegression(MLModel):
|
291 |
+
def __init__(self):
|
292 |
+
self.model = LogisticRegression()
|
293 |
+
|
294 |
+
def fit(self, embedded_quotes: np.ndarray[float], y: list[int]) -> None:
|
295 |
+
self.model.fit(embedded_quotes, y)
|
296 |
+
|
297 |
+
def predict(self, embedded_quotes: np.ndarray[float]) -> int:
|
298 |
+
return self.model.predict(embedded_quotes)
|
299 |
+
|
300 |
+
def save_to_directory(self, directory: Path) -> None:
|
301 |
+
directory.mkdir(parents=True, exist_ok=True)
|
302 |
+
joblib.dump(self.model, directory / "logistic_regression.joblib")
|
303 |
+
|
304 |
+
|
305 |
+
class EmbeddingMLModel(PredictionModel):
|
306 |
+
def __init__(self,
|
307 |
+
data_loader: TextDataLoader = TextDataLoader(),
|
308 |
+
embedder: TextEmbedder = TfIdfEmbedder(),
|
309 |
+
ml_model: MLModel = MultivariateLogisticRegression()):
|
310 |
+
super().__init__()
|
311 |
+
self.embedder = embedder
|
312 |
+
self.ml_model = ml_model
|
313 |
+
self.description = f"EmbeddingMLModel ({embedder.__class__.__name__} + {ml_model.__class__.__name__})"
|
314 |
+
|
315 |
+
def predict(self, quote: str) -> int:
|
316 |
+
embedded_quote = self.embedder.encode([quote])
|
317 |
+
return self.ml_model.predict(embedded_quote)
|
318 |
+
|
319 |
+
def train(self, dataset):
|
320 |
+
self.embedder.fit(dataset["quote"])
|
321 |
+
embedded_quotes = self.embedder.encode(dataset["quote"])
|
322 |
+
labels = dataset["label"]
|
323 |
+
self.ml_model.fit(embedded_quotes, labels)
|
324 |
+
|
325 |
+
def save_to_directory(self, directory: Path) -> None:
|
326 |
+
directory.mkdir(parents=True, exist_ok=True)
|
327 |
+
|
328 |
+
# save embedder and ml_model
|
329 |
+
self.embedder.save_to_directory(directory)
|
330 |
+
self.ml_model.save_to_directory(directory)
|
331 |
+
|
332 |
+
# Metadata pour le reload
|
333 |
+
metadata = {
|
334 |
+
"embedder_type": self.embedder.__class__.__name__,
|
335 |
+
"ml_model_type": self.ml_model.__class__.__name__
|
336 |
+
}
|
337 |
+
with open(directory / "metadata.json", "w") as f:
|
338 |
+
json.dump(metadata, f)
|
339 |
+
|
340 |
+
|
341 |
+
class ModelFactory:
|
342 |
+
@staticmethod
|
343 |
+
def create_model(config) -> PredictionModel:
|
344 |
+
"""
|
345 |
+
Factory method to create a model based on the model type.
|
346 |
+
|
347 |
+
Parameters:
|
348 |
+
-----------
|
349 |
+
model_type: str
|
350 |
+
The type of model to create. Options: "baseline", "distilbert"
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
--------
|
354 |
+
PredictionModel
|
355 |
+
The model instance.
|
356 |
+
|
357 |
+
Raises:
|
358 |
+
-------
|
359 |
+
ValueError
|
360 |
+
If the model type is not recognized.
|
361 |
+
"""
|
362 |
+
model_type = config["model_type"]
|
363 |
+
if model_type == "baseline":
|
364 |
+
return BaselineModel()
|
365 |
+
elif model_type == "distilbert":
|
366 |
+
try:
|
367 |
+
batch_size = config["batch_size"]
|
368 |
+
num_epochs = config["num_epochs"]
|
369 |
+
initial_learning_rate = config["initial_learning_rate"]
|
370 |
+
except KeyError as e:
|
371 |
+
raise ValueError(f"Missing configuration parameter: {e}")
|
372 |
+
|
373 |
+
return DistilBERTModel(batch_size=batch_size,
|
374 |
+
num_epochs=num_epochs,
|
375 |
+
initial_learning_rate=initial_learning_rate)
|
376 |
+
elif model_type == "distilbert-pretrained":
|
377 |
+
model = DistilBERTModel()
|
378 |
+
model_name = config["model_name"]
|
379 |
+
model_path = Path(__file__).parent / "pretrained_models" / model_name
|
380 |
+
if model_path.exists():
|
381 |
+
model.model = TFAutoModelForSequenceClassification.from_pretrained(model_path)
|
382 |
+
return model
|
383 |
+
else:
|
384 |
+
raise FileNotFoundError(f"Pretrained model not found at {model_path}")
|
385 |
+
elif model_type == "embeddingML":
|
386 |
+
embedding_ml_model = EmbeddingMLModel()
|
387 |
+
embedding_ml_model.train(TextDataLoader().get_train_dataset())
|
388 |
+
return embedding_ml_model
|
389 |
+
else:
|
390 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
tasks/text.py
CHANGED
@@ -2,73 +2,81 @@ from fastapi import APIRouter
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
-
import random
|
6 |
|
|
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
-
from .utils.emissions import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
router = APIRouter()
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
@router.post(ROUTE, tags=["Text Task"],
|
16 |
description=DESCRIPTION)
|
17 |
-
async def evaluate_text(request: TextEvaluationRequest
|
|
|
|
|
|
|
18 |
"""
|
19 |
Evaluate text classification for climate disinformation detection.
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# Get space info
|
26 |
-
username, space_url = get_space_info()
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
"0_not_relevant": 0,
|
31 |
-
"1_not_happening": 1,
|
32 |
-
"2_not_human": 2,
|
33 |
-
"3_not_bad": 3,
|
34 |
-
"4_solutions_harmful_unnecessary": 4,
|
35 |
-
"5_science_unreliable": 5,
|
36 |
-
"6_proponents_biased": 6,
|
37 |
-
"7_fossil_fuels_needed": 7
|
38 |
-
}
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
-
#--------------------------------------------------------------------------------------------
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
#--------------------------------------------------------------------------------------------
|
66 |
|
67 |
-
|
68 |
# Stop tracking emissions
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
# Calculate accuracy
|
|
|
72 |
accuracy = accuracy_score(true_labels, predictions)
|
73 |
|
74 |
# Prepare results dictionary
|
@@ -89,4 +97,4 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
89 |
}
|
90 |
}
|
91 |
|
92 |
-
return results
|
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
|
|
5 |
|
6 |
+
from .data.data_loaders import TextDataLoader
|
7 |
+
from .models.text_classifiers import BaselineModel
|
8 |
from .utils.evaluation import TextEvaluationRequest
|
9 |
+
from .utils.emissions import get_tracker, clean_emissions_data, get_space_info, EmissionsData
|
10 |
+
|
11 |
+
# define models
|
12 |
+
from .models.text_classifiers import ModelFactory
|
13 |
+
embedding_ml_model = ModelFactory.create_model({"model_type": "embeddingML"})
|
14 |
+
|
15 |
+
distilbert_model = ModelFactory.create_model({"model_type":
|
16 |
+
"distilbert-pretrained",
|
17 |
+
"model_name":
|
18 |
+
"2025-01-27_17-00-47_DistilBERT_Model_fined-tuned_from_distilbert-base-uncased"
|
19 |
+
})
|
20 |
|
|
|
21 |
|
22 |
+
model_to_evaluate = distilbert_model
|
23 |
+
|
24 |
+
# define router
|
25 |
+
router = APIRouter()
|
26 |
+
DESCRIPTION = model_to_evaluate.description
|
27 |
ROUTE = "/text"
|
28 |
|
29 |
@router.post(ROUTE, tags=["Text Task"],
|
30 |
description=DESCRIPTION)
|
31 |
+
async def evaluate_text(request: TextEvaluationRequest,
|
32 |
+
track_emissions: bool = True,
|
33 |
+
model = distilbert_model,
|
34 |
+
light_dataset: bool = False) -> dict:
|
35 |
"""
|
36 |
Evaluate text classification for climate disinformation detection.
|
37 |
|
38 |
+
Parameters:
|
39 |
+
-----------
|
40 |
+
request: TextEvaluationRequest
|
41 |
+
The request object containing the dataset configuration.
|
|
|
|
|
42 |
|
43 |
+
track_emissions: bool
|
44 |
+
Whether to track emissions or not.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
model: TextClassifier
|
47 |
+
The model to use for inference.
|
48 |
|
49 |
+
light_dataset: bool
|
50 |
+
Whether to use a light dataset or not.
|
51 |
|
52 |
+
Returns:
|
53 |
+
--------
|
54 |
+
dict
|
55 |
+
A dictionary containing the evaluation results.
|
56 |
+
"""
|
57 |
+
# Get space info
|
58 |
+
username, space_url = get_space_info()
|
59 |
|
60 |
+
# Load the dataset
|
61 |
+
test_dataset = TextDataLoader(request, light=light_dataset).get_test_dataset()
|
|
|
|
|
62 |
|
63 |
+
# Start tracking emissions
|
64 |
+
if track_emissions:
|
65 |
+
tracker = get_tracker()
|
66 |
+
tracker.start()
|
67 |
+
tracker.start_task("inference")
|
68 |
|
69 |
+
# model inference
|
70 |
+
predictions = [model.predict(quote) for quote in test_dataset["quote"]]
|
|
|
71 |
|
|
|
72 |
# Stop tracking emissions
|
73 |
+
if track_emissions:
|
74 |
+
emissions_data = tracker.stop_task()
|
75 |
+
else:
|
76 |
+
emissions_data = EmissionsData(0, 0)
|
77 |
|
78 |
# Calculate accuracy
|
79 |
+
true_labels = test_dataset["label"]
|
80 |
accuracy = accuracy_score(true_labels, predictions)
|
81 |
|
82 |
# Prepare results dictionary
|
|
|
97 |
}
|
98 |
}
|
99 |
|
100 |
+
return results
|
tasks/utils/emissions.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
from codecarbon import EmissionsTracker
|
2 |
import os
|
3 |
|
4 |
-
|
5 |
-
|
6 |
|
7 |
class EmissionsData:
|
8 |
def __init__(self, energy_consumed: float, emissions: float):
|
@@ -25,4 +25,4 @@ def get_space_info():
|
|
25 |
return username, space_url
|
26 |
except Exception as e:
|
27 |
print(f"Error getting space info: {e}")
|
28 |
-
return "local-user", "local-development"
|
|
|
1 |
from codecarbon import EmissionsTracker
|
2 |
import os
|
3 |
|
4 |
+
def get_tracker() -> EmissionsTracker:
|
5 |
+
return EmissionsTracker(allow_multiple_runs=True)
|
6 |
|
7 |
class EmissionsData:
|
8 |
def __init__(self, energy_consumed: float, emissions: float):
|
|
|
25 |
return username, space_url
|
26 |
except Exception as e:
|
27 |
print(f"Error getting space info: {e}")
|
28 |
+
return "local-user", "local-development"
|
test_text_classifiers.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from main import load_config
|
7 |
+
from tasks.data.data_loaders import TextDataLoader
|
8 |
+
from tasks.models.text_classifiers import DistilBERTModel, ModelFactory, TextEmbedder, MLModel, EmbeddingMLModel, \
|
9 |
+
TfIdfEmbedder
|
10 |
+
from tasks.utils.evaluation import TextEvaluationRequest
|
11 |
+
|
12 |
+
@pytest.fixture()
|
13 |
+
def data_loader():
|
14 |
+
# define text request
|
15 |
+
text_request = TextEvaluationRequest()
|
16 |
+
|
17 |
+
return TextDataLoader(text_request, light=True)
|
18 |
+
|
19 |
+
@pytest.fixture()
|
20 |
+
def train_dataset(data_loader):
|
21 |
+
return data_loader.get_train_dataset()
|
22 |
+
|
23 |
+
@pytest.fixture()
|
24 |
+
def test_dataset(data_loader):
|
25 |
+
return data_loader.get_test_dataset()
|
26 |
+
|
27 |
+
|
28 |
+
class TestDistilBERTModel:
|
29 |
+
@pytest.fixture()
|
30 |
+
def distilBERT_model(self):
|
31 |
+
config = load_config("config_training_test.json")
|
32 |
+
return ModelFactory.create_model(config)
|
33 |
+
|
34 |
+
def test_trained_distilBERT(self, train_dataset, distilBERT_model, test_dataset):
|
35 |
+
assert "DistilBERT" in distilBERT_model.description
|
36 |
+
|
37 |
+
# train model
|
38 |
+
distilBERT_model.train(train_dataset)
|
39 |
+
|
40 |
+
# inference
|
41 |
+
predictions = [distilBERT_model.predict(quote) for quote in test_dataset["quote"]]
|
42 |
+
for prediction in predictions:
|
43 |
+
assert prediction in range(8)
|
44 |
+
|
45 |
+
def test_data_preprocessing(self, train_dataset, distilBERT_model):
|
46 |
+
pre_processed_data = distilBERT_model.pre_process_data(train_dataset)
|
47 |
+
assert pre_processed_data is not None
|
48 |
+
assert pre_processed_data["train"].num_rows == 8
|
49 |
+
assert pre_processed_data["test"].num_rows == 2
|
50 |
+
|
51 |
+
for subset in ["train", "test"]:
|
52 |
+
for feature_name in ['quote', 'label', 'input_ids', 'attention_mask']:
|
53 |
+
assert feature_name in pre_processed_data[subset].features.keys()
|
54 |
+
|
55 |
+
|
56 |
+
class DummyEmbedder(TextEmbedder):
|
57 |
+
def encode(self, text: str) -> np.ndarray:
|
58 |
+
return np.random.rand(42)
|
59 |
+
|
60 |
+
|
61 |
+
class DummyMLModel(MLModel):
|
62 |
+
def fit(self, X, y):
|
63 |
+
pass
|
64 |
+
|
65 |
+
def predict(self, X):
|
66 |
+
return random.choice(range(8))
|
67 |
+
|
68 |
+
|
69 |
+
class TestEmbeddingMLModel:
|
70 |
+
@pytest.fixture()
|
71 |
+
def embeddingML(self):
|
72 |
+
config = load_config("config_training_embedding_test.json")
|
73 |
+
config["model"] = "EmbeddingMLModel"
|
74 |
+
return ModelFactory.create_model(config)
|
75 |
+
|
76 |
+
def test_EmbeddingML(self, train_dataset, embeddingML):
|
77 |
+
assert "EmbeddingMLModel" in embeddingML.description
|
78 |
+
|
79 |
+
# train model
|
80 |
+
embeddingML.train(train_dataset)
|
81 |
+
|
82 |
+
# inference
|
83 |
+
assert embeddingML.predict("a quote") in range(8)
|
84 |
+
|
85 |
+
def test_dummy_train_EmbeddingML(self, train_dataset):
|
86 |
+
dummy_model = EmbeddingMLModel(embedder=DummyEmbedder(),
|
87 |
+
ml_model=DummyMLModel())
|
88 |
+
|
89 |
+
dummy_model.train(train_dataset)
|
90 |
+
assert dummy_model.predict("dummy") in range(8)
|
91 |
+
|
92 |
+
class TestEmbedders:
|
93 |
+
def test_tf_idf(self):
|
94 |
+
embedder = TfIdfEmbedder()
|
95 |
+
|
96 |
+
texts = [
|
97 |
+
"hello world",
|
98 |
+
"world hello",
|
99 |
+
"yet another text",
|
100 |
+
"this is a test",
|
101 |
+
"this one as well"
|
102 |
+
]
|
103 |
+
encoded_texts = embedder.encode(texts)
|
104 |
+
assert encoded_texts.shape == (5, 11)
|