File size: 10,559 Bytes
125a40c
 
 
 
 
 
 
 
 
 
 
 
 
e44dd4f
125a40c
 
 
 
 
9a45591
125a40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f2e74b
 
8e15d03
125a40c
8e15d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f2e74b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e15d03
125a40c
 
 
 
 
afe73e1
 
 
 
 
 
 
e44dd4f
d11e106
 
 
 
 
6066892
125a40c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import gradio as gr
import os
import sys
from pathlib import Path
import random
import string
import time
from queue import Queue
from threading import Thread
import emoji



text_gen=gr.Interface.load("spaces/Dao3/MagicPrompt-Stable-Diffusion")
def get_prompts(prompt_text):
    if prompt_text:
        return text_gen("photo, " + prompt_text)
    else:
        return text_gen("")
proc1=gr.Interface.load("models/dreamlike-art/dreamlike-photoreal-2.0")

def restart_script_periodically():
    while True:
        random_time = random.randint(540, 600)
        time.sleep(random_time)
        os.execl(sys.executable, sys.executable, *sys.argv)


restart_thread = Thread(target=restart_script_periodically, daemon=True)
restart_thread.start()


queue = Queue()
queue_threshold = 100

def add_random_noise(prompt, noise_level=0.00):
    if noise_level == 0:
        noise_level = 0.00
    percentage_noise = noise_level * 5
    num_noise_chars = int(len(prompt) * (percentage_noise/100))
    noise_indices = random.sample(range(len(prompt)), num_noise_chars)
    prompt_list = list(prompt)
    noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits)
    noise_chars.extend(['😍', '💩', '😂', '🤔', '😊', '🤗', '😭', '🙄', '😷', '🤯', '🤫', '🥴', '😴', '🤩', '🥳', '😔', '😩', '🤪', '😇', '🤢', '😈', '👹', '👻', '🤖', '👽', '💀', '🎃', '🎅', '🎄', '🎁', '🎂', '🎉', '🎈', '🎊', '🎮', '❤️', '💔', '💕', '💖', '💗', '🐶', '🐱', '🐭', '🐹', '🦊', '🐻', '🐨', '🐯', '🦁', '🐘', '🔥', '🌧️', '🌞', '🌈', '💥', '🌴', '🌊', '🌺', '🌻', '🌸', '🎨', '🌅', '🌌', '☁️', '⛈️', '❄️', '☀️', '🌤️', '⛅️', '🌥️', '🌦️', '🌧️', '🌩️', '🌨️', '🌫️', '☔️', '🌬️', '💨', '🌪️', '🌈'])
    for index in noise_indices:
        prompt_list[index] = random.choice(noise_chars)
    return "".join(prompt_list)


def send_it1(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(2)
    queue.put(prompt_with_noise)
    output1 = proc1(prompt_with_noise)
    return output1

def send_it2(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(2)
    queue.put(prompt_with_noise)
    output2 = proc1(prompt_with_noise)
    return output2

#def send_it3(inputs, noise_level, proc1=proc1):
    #prompt_with_noise = add_random_noise(inputs, noise_level)
    #while queue.qsize() >= queue_threshold:
        #time.sleep(2)
    #queue.put(prompt_with_noise)
    #output3 = proc1(prompt_with_noise)
    #return output3

#def send_it4(inputs, noise_level, proc1=proc1):
    #prompt_with_noise = add_random_noise(inputs, noise_level)
    #while queue.qsize() >= queue_threshold:
        #time.sleep(2)
    #queue.put(prompt_with_noise)
    #output4 = proc1(prompt_with_noise)
    #return output4







def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):

    print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        update_state(f"Loading {current_model.name} text-to-image model...")

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
        else:
          pipe = StableDiffusionPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
              )
          # pipe = pipe.to("cpu")
          # pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
          pipe.enable_xformers_memory_efficient_attention()
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt  
    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      num_images_per_prompt=n_images,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator,
      callback=pipe_callback)

    # update_state(f"Done. Seed: {seed}")
    
    return replace_nsfw_images(result)

def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):

    print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        update_state(f"Loading {current_model.name} image-to-image model...")

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
        else:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float16,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
              )
          # pipe = pipe.to("cpu")
          # pipe = current_model.pipe_i2i
        
        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
          pipe.enable_xformers_memory_efficient_attention()
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt = neg_prompt,
        num_images_per_prompt=n_images,
        image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        # width = width,
        # height = height,
        generator = generator,
        callback=pipe_callback)

    # update_state(f"Done. Seed: {seed}")
        
    return replace_nsfw_images(result)

def replace_nsfw_images(results):

    if is_colab:
      return results.images
      
    for i in range(len(results.images)):
      if results.nsfw_content_detected[i]:
        results.images[i] = Image.open("nsfw.png")
    return results.images










with gr.Blocks(css='style.css') as demo:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div>
                <h2 style="font-weight: 900; font-size: 3rem; margin-bottom:20px;">
                  幻梦成真-2.0
                </h2>
              </div>
              <p style="margin-bottom: 10px; font-size: 96%">
              差异程度: 用数值调节两张图的差异程度。数值越大,两张图的差异越大,反之越小。
              </p>
              <p style="margin-bottom: 10px; font-size: 98%">
              ❤️ 喜欢的话,就点上面的❤️吧~❤️</a>
              </p>
            </div>
        """
    )
    with gr.Column(elem_id="col-container"):
        with gr.Row(variant="compact"):
            input_text = gr.Textbox(
                label="Short Prompt",
                show_label=False,
                max_lines=2,
                placeholder="输入你的想象(英文词汇),然后按右边按钮。没灵感?直接按!",
            ).style(
                container=False,
            )
            see_prompts = gr.Button("✨ 咒语显现 ✨").style(full_width=False)

        
        with gr.Row(variant="compact"):
            prompt = gr.Textbox(
                label="输入描述词",
                show_label=False,
                max_lines=2,
                placeholder="可输入完整描述词,或者用咒语显现按钮生成",
            ).style(
                container=False,
            )
            run = gr.Button("✨ 幻梦成真✨").style(full_width=False)
        
        with gr.Row():
            with gr.Row():
                noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="差异程度")
        with gr.Row():
            with gr.Row():
                output1=gr.Image(label="Dreamlike-photoreal-2.0",show_label=False)
                output2=gr.Image(label="Dreamlike-photoreal-2.0",show_label=False)
        
    #with gr.Row():
        #output1=gr.Image()

        see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False)
        run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
        run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])
        
    

        with gr.Row():
                gr.HTML(
    """
        <div class="footer">
        <p> 
        使用了<a href="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0">Dreamlike Photoreal 2.0</a> 制作的sd模型, <a href="https://twitter.com/DavidJohnstonxx/">本案例最初作者Phenomenon1981</a>
        </p>
        </div>

       
        <div class="acknowledgments" style="font-size: 115%">
            <p> 
            这个模型和<a href="https://huggingface.co/spaces/Dao3/DreamlikeArt-Diffusion-1.0">幻梦成真</a>的区别是:幻梦显形更虚幻,这个模型更真实,毕竟都"成真"了嘛。 </p>
            </p>
        </div>
        <div class="acknowledgments" style="font-size: 115%">
            <p> 
            安利:还有一个汉化项目:<a href="https://tiwenti.chat/">TiwenTi.chat</a>,这是一个ChatGPT的中文案例库,按照工具用途和角色扮演用途做了分类,欢迎去看去分享~ </p>
            </p>
        </div>
    """
)

    demo.launch(enable_queue=True, inline=True)
    block.queue(concurrency_count=100)