File size: 8,667 Bytes
ce640b1
 
 
 
a15d400
ce640b1
 
58e7d79
ce640b1
 
 
eaf1b5a
ce640b1
580d690
ce640b1
58e7d79
 
 
 
 
ce640b1
58e7d79
ce640b1
9456e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
e023ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
29a4351
580d690
58e7d79
98877fd
 
a15d400
98877fd
 
 
 
 
 
 
e023ad0
580d690
58e7d79
5c727a9
c8a7013
eaf1b5a
5276966
580d690
eaf1b5a
 
98877fd
 
eaf1b5a
 
f766b30
 
600962b
580d690
5276966
580d690
7b2b8c3
580d690
 
 
eaf1b5a
ce640b1
eaf1b5a
ce640b1
600962b
ce640b1
58e7d79
ce640b1
 
58e7d79
 
7f6ca2e
 
58e7d79
 
 
 
ce640b1
58e7d79
ce640b1
58e7d79
ce640b1
f9ebabd
ce640b1
58e7d79
ce640b1
 
58e7d79
 
 
 
 
 
 
ce640b1
58e7d79
ce640b1
58e7d79
ce640b1
f9ebabd
ce640b1
e023ad0
8412bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce640b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr

# Daftar model dan ControlNet
models = ["Model A", "Model B", "Model C"]
vae = ["VAE A", "VAE B", "VAE C"]
controlnet_types = ["Canny", "Depth", "Normal", "Pose"]

# Fungsi placeholder
def load_model(selected_model):
    return f"Model {selected_model} telah dimuat."

def generate_image(prompt, neg_prompt, width, height, scheduler, num_steps, num_images, cfg_scale, seed, model):
    # Logika untuk menghasilkan gambar dari teks menggunakan model
    return [f"Gambar {i+1} untuk prompt '{prompt}' dengan model '{model}'" for i in range(num_images)], {"prompt": prompt, "neg_prompt": neg_prompt}

def process_image(image, prompt, neg_prompt, model):
    # Logika untuk memproses gambar menggunakan model
    return f"Proses gambar dengan prompt '{prompt}' dan model '{model}'"

def controlnet_process(image, controlnet_type, model):
    # Logika untuk memproses gambar menggunakan ControlNet
    return f"Proses gambar dengan ControlNet '{controlnet_type}' dan model '{model}'"

#wd tagger
# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"

# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"

dropdown_list = [
        SWINV2_MODEL_DSV3_REPO,
        CONV_MODEL_DSV3_REPO,
        VIT_MODEL_DSV3_REPO,
        VIT_LARGE_MODEL_DSV3_REPO,
        EVA02_LARGE_MODEL_DSV3_REPO,
        MOAT_MODEL_DSV2_REPO,
        SWIN_MODEL_DSV2_REPO,
        CONV_MODEL_DSV2_REPO,
        CONV2_MODEL_DSV2_REPO,
        VIT_MODEL_DSV2_REPO,
]

with gr.Blocks(css= "style.css") as app:
    # Dropdown untuk memilih model di luar tab dengan lebar kecil
    with gr.Row():
        model_dropdown = gr.Dropdown(choices=models, label="Model", value="Model B", scale=0.3)
        vae_dropdown = gr.Dropdown(choices=vae, label="VAE", value="VAE C", scale=0.3)

    # Prompt dan Neg Prompt
    with gr.Row():
        with gr.Column(scale=1):  # Scale 1 ensures full width
            prompt_input = gr.Textbox(label="Prompt", placeholder="Masukkan prompt teks", lines=2, elem_id="prompt-input")
            neg_prompt_input = gr.Textbox(label="Neg Prompt", placeholder="Masukkan negasi prompt", lines=2, elem_id="neg-prompt-input")
           
        generate_button = gr.Button("Generate", elem_id="generate-button", scale=0.13)

    
    # Tab untuk Text-to-Image
    with gr.Tab("Text-to-Image"):
        
        with gr.Row():
            with gr.Column():
                # Konfigurasi
                scheduler_input = gr.Dropdown(choices=["Euler", "LMS", "DDIM"], label="Sampling method")
                num_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Sampling steps", value=20)
                width_input = gr.Slider(minimum=128, maximum=2048, step=128, label="Width", value=512)
                height_input = gr.Slider(minimum=128, maximum=2048, step=128, label="Height", value=512)
                cfg_scale_input = gr.Slider(minimum=1, maximum=20, step=1, label="CFG Scale", value=7)
                seed_input = gr.Number(label="Seed", value=-1)
                batch_size = gr.Slider(minimum=1, maximum=24, step=1, label="Batch size", value=1)
                batch_count = gr.Slider(minimum=1, maximum=24, step=1, label="Batch Count", value=1)
            
            
            with gr.Column():
                # Gallery untuk output gambar
                output_gallery = gr.Gallery(label="Hasil Gambar")
                # Output teks JSON di bawah gallery
                output_text = gr.Textbox(label="Output JSON", placeholder="Hasil dalam format JSON", lines=2)

        def update_images(prompt, neg_prompt, width, height, scheduler, num_steps, num_images, cfg_scale, seed, model):
            # Update fungsi sesuai kebutuhan
            return generate_image(prompt, neg_prompt, width, height, scheduler, num_steps, num_images, cfg_scale, seed, model)
        
        generate_button.click(fn=update_images, inputs=[prompt_input, neg_prompt_input, width_input, height_input, scheduler_input, num_steps_input, batch_size, batch_count, cfg_scale_input, seed_input, model_dropdown, vae_dropdown], outputs=[output_gallery, output_text])

    # Tab untuk Image-to-Image
    with gr.Tab("Image-to-Image"):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(label="Unggah Gambar")
                prompt_input_i2i = gr.Textbox(label="Prompt", placeholder="Masukkan prompt teks", lines=2)
                neg_prompt_input_i2i = gr.Textbox(label="Neg Prompt", placeholder="Masukkan negasi prompt", lines=2)
                generate_button_i2i = gr.Button("Proses Gambar")
            
            with gr.Column():
                output_image_i2i = gr.Image(label="Hasil Gambar")
        
        def process_image_func(image, prompt, neg_prompt, model):
            # Update fungsi sesuai kebutuhan
            return process_image(image, prompt, neg_prompt, model)
        
        generate_button_i2i.click(fn=process_image_func, inputs=[image_input, prompt_input_i2i, neg_prompt_input_i2i, model_dropdown, vae_dropdown], outputs=output_image_i2i)

    # Tab untuk ControlNet
    with gr.Tab("ControlNet"):
        with gr.Row():
            with gr.Column():
                controlnet_dropdown = gr.Dropdown(choices=controlnet_types, label="Pilih Tipe ControlNet")
                controlnet_image_input = gr.Image(label="Unggah Gambar untuk ControlNet")
                controlnet_button = gr.Button("Proses dengan ControlNet")
            
            with gr.Column():
                controlnet_output_image = gr.Image(label="Hasil ControlNet")
        
        def controlnet_process_func(image, controlnet_type, model):
            # Update fungsi sesuai kebutuhan
            return controlnet_process(image, controlnet_type, model)
        
        controlnet_button.click(fn=controlnet_process_func, inputs=[controlnet_image_input, controlnet_dropdown, model_dropdown, vae_dropdown], outputs=controlnet_output_image)

    
    # Tab untuk Describe
    with gr.Tab("Describe"):
        # Components
        image = gr.Image(type="pil", image_mode="RGBA", label="Input")
        model_repo = gr.Dropdown(dropdown_list, value=SWINV2_MODEL_DSV3_REPO, label="Model")
        general_thresh = gr.Slider(0, 1, step=args.score_slider_step, value=args.score_general_threshold, label="General Tags Threshold", scale=3)
        general_mcut_enabled = gr.Checkbox(value=False, label="Use MCut threshold", scale=1)
        character_thresh = gr.Slider(0, 1, step=args.score_slider_step, value=args.score_character_threshold, label="Character Tags Threshold", scale=3)
        character_mcut_enabled = gr.Checkbox(value=False, label="Use MCut threshold", scale=1)
        clear_button = gr.ClearButton(components=[image, model_repo, general_thresh, general_mcut_enabled, character_thresh, character_mcut_enabled], variant="secondary", size="lg")
        submit_button = gr.Button(value="Submit", variant="primary", size="lg")
        sorted_general_strings = gr.Textbox(label="Output (string)")
        rating = gr.Label(label="Rating")
        character_res = gr.Label(label="Output (characters)")
        general_res = gr.Label(label="Output (tags)")
        # Layout
        with gr.Row():
            with gr.Column(variant="panel"):
                image.render()
                model_repo.render()
                general_thresh.render()
                general_mcut_enabled.render()
                character_thresh.render()
                character_mcut_enabled.render()
                clear_button.render()
                submit_button.render()
            with gr.Column(variant="panel"):
                sorted_general_strings.render()
                rating.render()
                character_res.render()
                general_res.render()
        clear_button.add([sorted_general_strings, rating, character_res, general_res])
        submit_button.click(predictor.predict, inputs=[image, model_repo, general_thresh, general_mcut_enabled, character_thresh, character_mcut_enabled], outputs=[sorted_general_strings, rating, character_res, general_res])

# Jalankan antarmuka
app.launch()