File size: 10,736 Bytes
f3f7425
 
 
 
 
 
12e0acb
f3f7425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44383da
f3f7425
 
 
 
 
 
 
715781b
 
 
 
 
 
 
f3f7425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e4042b
f3f7425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e0acb
f3f7425
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""This is a public module. It should have a docstring."""
import itertools
import os
import random
from typing import Any, List, Tuple

import streamlit as st
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (
    AgentTokenBufferMemory,
)
from langchain.callbacks import StreamlitCallbackHandler
from langchain.chains import QAGenerationChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import MessagesPlaceholder
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS

st.set_page_config(page_title="InQuest", page_icon="๐Ÿ“š")

starter_message = "Ask me anything about the Doc!"


@st.cache_resource
def create_prompt(openai_api_key: str) -> Tuple[SystemMessage, ChatOpenAI]:
    """Create prompt."""
    # Make your OpenAI API request here
    llm = ChatOpenAI(
        temperature=0,
        model_name="gpt-3.5-turbo",
        streaming=True,
        openai_api_key=openai_api_key,
    )

    message = SystemMessage(
        content=(
            "You are a helpful chatbot who is tasked with answering questions about context given through uploaded documents."  # noqa: E501 comment
            "Unless otherwise explicitly stated, it is probably fair to assume that questions are about the context given."  # noqa: E501 comment
            "If there is any ambiguity, you probably assume they are about that."  # noqa: E501 comment
        )
    )

    prompt = OpenAIFunctionsAgent.create_prompt(
        system_message=message,
        extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
    )

    return prompt, llm


@st.cache_data
def save_file_locally(file: Any) -> str:
    """Save uploaded files locally."""
    doc_path = os.path.join("tempdir", file.name)
    with open(doc_path, "wb") as f:
        f.write(file.getbuffer())

    return doc_path


@st.cache_data
def load_docs(files: List[Any], url: bool = False) -> str:
    """Load and process the uploaded PDF files."""
    if not url:
        st.info("`Reading doc ...`")
        documents = []
        for file in files:
            doc_path = save_file_locally(file)
            pages = PyPDFLoader(doc_path)
            documents.extend(pages.load())

    return ",".join([doc.page_content for doc in documents])


@st.cache_data
def gen_embeddings() -> HuggingFaceEmbeddings:
    """Generate embeddings for given model."""
    embeddings = HuggingFaceEmbeddings(
        cache_folder="hf_model"
    )  # https://github.com/UKPLab/sentence-transformers/issues/1828
    return embeddings


@st.cache_resource
def process_corpus(corpus: str, chunk_size: int = 1000, overlap: int = 50) -> List:
    """Process text for Semantic Search."""
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, chunk_overlap=overlap
    )

    texts = text_splitter.split_text(corpus)

    # Display the number of text chunks
    num_chunks = len(texts)
    st.write(f"Number of text chunks: {num_chunks}")

    # select embedding model
    embeddings = gen_embeddings()

    # create vectorstore
    vectorstore = FAISS.from_texts(texts, embeddings).as_retriever(
        search_kwargs={"k": 4}
    )

    # create retriever tool
    tool = create_retriever_tool(
        vectorstore,
        "search_docs",
        "Searches and returns documents using the context provided as a source, relevant to the user input question.",  # noqa: E501 comment
    )

    tools = [tool]
    return tools


@st.cache_data
def generate_agent_executer(text: str) -> List[AgentExecutor]:
    """Generate the memory functionality."""
    tools = process_corpus(text)

    agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
    # Synthwave

    agent_executor = AgentExecutor(
        agent=agent,
        tools=tools,
        verbose=True,
        return_intermediate_steps=True,
    )
    return agent_executor


@st.cache_data
def generate_eval(raw_text: str, N: int, chunk: int) -> List:
    """Generate the focusing functionality."""
    # Generate N questions from context of chunk chars
    # IN: text, N questions, chunk size to draw question from in the doc
    # OUT: eval set as JSON list
    # raw_text = ','.join(raw_text)
    update = st.empty()
    ques_update = st.empty()
    update.info("`Generating sample questions ...`")
    n = len(raw_text)
    starting_indices = [random.randint(0, n - chunk) for _ in range(N)]
    sub_sequences = [raw_text[i : i + chunk] for i in starting_indices]
    chain = QAGenerationChain.from_llm(llm)
    eval_set = []
    for i, b in enumerate(sub_sequences):
        try:
            qa = chain.run(b)
            eval_set.append(qa)
            ques_update.info(f"Creating Question: {i+1}")
        except ValueError:
            st.warning(f"Error in generating Question: {i+1}...", icon="โš ๏ธ")
            continue

    eval_set_full = list(itertools.chain.from_iterable(eval_set))

    update.empty()
    ques_update.empty()

    return eval_set_full


@st.cache_resource()
def gen_side_bar_qa(text: str) -> None:
    """Generate responses from query."""
    if text:
        # Check if there are no generated question-answer pairs in the session state
        if "eval_set" not in st.session_state:
            # Use the generate_eval function to generate question-answer pairs
            num_eval_questions = 5  # Number of question-answer pairs to generate
            st.session_state.eval_set = generate_eval(text, num_eval_questions, 3000)

        # Display the question-answer pairs in the sidebar with smaller text
        for i, qa_pair in enumerate(st.session_state.eval_set):
            st.sidebar.markdown(
                f"""
                <div class="css-card">
                <span class="card-tag">Question {i + 1}</span>
                    <p style="font-size: 12px;">{qa_pair['question']}</p>
                    <p style="font-size: 12px;">{qa_pair['answer']}</p>
                </div>
                """,
                unsafe_allow_html=True,
            )
        st.write("Ready to answer your questions.")


# Add custom CSS
st.markdown(
    """
    <style>
    #MainMenu {visibility: hidden;
    # }
        footer {visibility: hidden;
        }
        .css-card {
            border-radius: 0px;
            padding: 30px 10px 10px 10px;
            background-color: black;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
            margin-bottom: 10px;
            font-family: "IBM Plex Sans", sans-serif;
        }
        .card-tag {
            border-radius: 0px;
            padding: 1px 5px 1px 5px;
            margin-bottom: 10px;
            position: absolute;
            left: 0px;
            top: 0px;
            font-size: 0.6rem;
            font-family: "IBM Plex Sans", sans-serif;
            color: white;
            background-color: green;
            }
        .css-zt5igj {left:0;
        }
        span.css-10trblm {margin-left:0;
        }
        div.css-1kyxreq {margin-top: -40px;
        }
    </style>
    """,
    unsafe_allow_html=True,
)

st.write(
    """
<div style="display: flex; align-items: center; margin-left: 0;">
    <h1 style="display: inline-block;">InQuest</h1>
    <sup style="margin-left:5px;font-size:small; color: green;">beta</sup>
</div>
""",
    unsafe_allow_html=True,
)

# Build sidebar
with st.sidebar:
    openai_api_key = st.text_input(
        "OpenAI API Key", key="api_key_openai", type="password"
    )
    if openai_api_key and openai_api_key.startswith("sk-"):
        prompt, llm = create_prompt(openai_api_key)
        memory = AgentTokenBufferMemory(llm=llm)
        "[here OpenAI API key](https://platform.openai.com/account/api-keys)"
    else:
        st.info("Please add your correct OpenAI API key in the sidebar.")

# If there's no OpenAI API key, show a message and stop the app for rendering further
if not openai_api_key:
    st.info("Please add your OpenAI API key in the sidebar.")
    st.stop()

# Use RecursiveCharacterTextSplitter as the default and only text splitter
splitter_type = "RecursiveCharacterTextSplitter"

uploaded_files = st.file_uploader(
    "Upload a PDF Document", type=["pdf"], accept_multiple_files=True
)

if uploaded_files:
    # Check if last_uploaded_files is not in session_state or
    # if uploaded_files are different from last_uploaded_files
    if (
        "last_uploaded_files" not in st.session_state
        or st.session_state.last_uploaded_files != uploaded_files
    ):
        st.session_state.last_uploaded_files = uploaded_files
        if "eval_set" in st.session_state:
            del st.session_state["eval_set"]

    # Load and process the uploaded PDF or TXT files.
    raw_pdf_text = load_docs(uploaded_files)
    st.success("Documents uploaded and processed.")

    # # Question and answering
    # user_question = st.text_input("Enter your question:")

    # embeddings = gen_embeddings()
    # gen_side_bar_qa(raw_pdf_text)

    # memory, agent_executor = generate_memory_agent_executre(raw_pdf_text)
    agent_executor = generate_agent_executer(raw_pdf_text)

if "messages" not in st.session_state or st.sidebar.button("Clear message history"):
    st.session_state["messages"] = [AIMessage(content=starter_message)]

for msg in st.session_state.messages:
    if isinstance(msg, AIMessage):
        st.chat_message("assistant").write(msg.content)
    elif isinstance(msg, HumanMessage):
        st.chat_message("user").write(msg.content)
    memory.chat_memory.add_message(msg)

if user_question := st.chat_input(placeholder=starter_message):
    st.chat_message("user").write(user_question)

    with st.chat_message("assistant"):
        st_callback = StreamlitCallbackHandler(
            st.container(),
            expand_new_thoughts=True,
            collapse_completed_thoughts=True,
            thought_labeler=None,
        )

        response = agent_executor(
            {"input": user_question, "history": st.session_state.messages},
            callbacks=[st_callback],
            include_run_info=True,
        )
        st.session_state.messages.append(AIMessage(content=response["output"]))

        st.write(response["output"])

        memory.save_context({"input": user_question}, response)

        st.session_state["messages"] = memory.buffer

        run_id = response["__run"].run_id

        col_blank, col_text, col1, col2 = st.columns([10, 2, 1, 1])