Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,78 +7,77 @@ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassifica
|
|
7 |
from sklearn.ensemble import RandomForestClassifier
|
8 |
import joblib
|
9 |
import os
|
|
|
10 |
|
11 |
-
#
|
12 |
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
13 |
model = AutoModelForSequenceClassification.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
14 |
anomaly_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
15 |
|
16 |
-
#
|
17 |
if not os.path.exists('failure_prediction_model.pkl'):
|
18 |
-
# Sample data (replace this with real Cisco device metrics data)
|
19 |
data = pd.DataFrame({
|
20 |
'cpu_usage': [10, 20, 15, 35, 55],
|
21 |
'memory_usage': [30, 60, 45, 50, 80],
|
22 |
'error_rate': [0, 1, 0, 2, 5],
|
23 |
-
'failure': [0, 1, 0, 1, 1]
|
24 |
})
|
25 |
-
|
26 |
-
# Features and target
|
27 |
X = data[['cpu_usage', 'memory_usage', 'error_rate']]
|
28 |
y = data['failure']
|
29 |
-
|
30 |
-
# Train the Random Forest model
|
31 |
failure_prediction_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
32 |
failure_prediction_model.fit(X, y)
|
33 |
-
|
34 |
-
# Save the model for future use
|
35 |
joblib.dump(failure_prediction_model, 'failure_prediction_model.pkl')
|
36 |
else:
|
37 |
-
# Load the trained model from file
|
38 |
failure_prediction_model = joblib.load('failure_prediction_model.pkl')
|
39 |
|
40 |
-
#
|
41 |
def preprocess_logs(logs):
|
42 |
logs['timestamp'] = pd.to_datetime(logs['timestamp'])
|
43 |
-
logs['log_message'] = logs['log_message'].str.lower()
|
44 |
return logs
|
45 |
|
46 |
-
#
|
47 |
def detect_anomaly(logs):
|
48 |
preprocessed_logs = preprocess_logs(logs)
|
49 |
results = []
|
50 |
for log in preprocessed_logs['log_message']:
|
51 |
-
anomaly_result = anomaly_detection(log)
|
52 |
-
results.append(anomaly_result[0]['label'])
|
53 |
return results
|
54 |
|
55 |
-
#
|
56 |
def predict_failure(device_metrics):
|
57 |
-
# Check if metrics are None or missing required fields
|
58 |
if device_metrics is None:
|
59 |
return "Device metrics are missing."
|
60 |
if 'cpu_usage' not in device_metrics or 'memory_usage' not in device_metrics or 'error_rate' not in device_metrics:
|
61 |
return "Invalid metrics format. Please provide 'cpu_usage', 'memory_usage', and 'error_rate'."
|
62 |
|
63 |
-
# Convert device metrics into a numpy array for prediction
|
64 |
metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
|
65 |
-
failure_prediction = failure_prediction_model.predict(metrics_array)
|
66 |
return failure_prediction
|
67 |
|
68 |
-
#
|
69 |
def process_logs_and_predict(log_file, metrics):
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
return f"Anomalies Detected: {anomalies}, Failure Prediction: {failure_pred}"
|
75 |
|
76 |
-
#
|
77 |
iface = gr.Interface(fn=process_logs_and_predict,
|
78 |
inputs=["file", "json"],
|
79 |
outputs="text",
|
80 |
title="Cisco Device Monitoring",
|
81 |
description="Upload log files to detect anomalies and predict potential device failures.")
|
82 |
-
|
83 |
-
# Launch the Gradio interface
|
84 |
iface.launch()
|
|
|
7 |
from sklearn.ensemble import RandomForestClassifier
|
8 |
import joblib
|
9 |
import os
|
10 |
+
import json
|
11 |
|
12 |
+
# Load Hugging Face model for anomaly detection
|
13 |
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
14 |
model = AutoModelForSequenceClassification.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
15 |
anomaly_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
16 |
|
17 |
+
# Train or load Random Forest model for failure prediction
|
18 |
if not os.path.exists('failure_prediction_model.pkl'):
|
|
|
19 |
data = pd.DataFrame({
|
20 |
'cpu_usage': [10, 20, 15, 35, 55],
|
21 |
'memory_usage': [30, 60, 45, 50, 80],
|
22 |
'error_rate': [0, 1, 0, 2, 5],
|
23 |
+
'failure': [0, 1, 0, 1, 1]
|
24 |
})
|
|
|
|
|
25 |
X = data[['cpu_usage', 'memory_usage', 'error_rate']]
|
26 |
y = data['failure']
|
|
|
|
|
27 |
failure_prediction_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
28 |
failure_prediction_model.fit(X, y)
|
|
|
|
|
29 |
joblib.dump(failure_prediction_model, 'failure_prediction_model.pkl')
|
30 |
else:
|
|
|
31 |
failure_prediction_model = joblib.load('failure_prediction_model.pkl')
|
32 |
|
33 |
+
# Preprocess logs for anomaly detection
|
34 |
def preprocess_logs(logs):
|
35 |
logs['timestamp'] = pd.to_datetime(logs['timestamp'])
|
36 |
+
logs['log_message'] = logs['log_message'].str.lower()
|
37 |
return logs
|
38 |
|
39 |
+
# Detect anomalies in logs
|
40 |
def detect_anomaly(logs):
|
41 |
preprocessed_logs = preprocess_logs(logs)
|
42 |
results = []
|
43 |
for log in preprocessed_logs['log_message']:
|
44 |
+
anomaly_result = anomaly_detection(log)
|
45 |
+
results.append(anomaly_result[0]['label'])
|
46 |
return results
|
47 |
|
48 |
+
# Predict failures based on device metrics
|
49 |
def predict_failure(device_metrics):
|
|
|
50 |
if device_metrics is None:
|
51 |
return "Device metrics are missing."
|
52 |
if 'cpu_usage' not in device_metrics or 'memory_usage' not in device_metrics or 'error_rate' not in device_metrics:
|
53 |
return "Invalid metrics format. Please provide 'cpu_usage', 'memory_usage', and 'error_rate'."
|
54 |
|
|
|
55 |
metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
|
56 |
+
failure_prediction = failure_prediction_model.predict(metrics_array)
|
57 |
return failure_prediction
|
58 |
|
59 |
+
# Process logs and predict anomalies and failures
|
60 |
def process_logs_and_predict(log_file, metrics):
|
61 |
+
# Read and validate log file format
|
62 |
+
try:
|
63 |
+
logs = pd.read_json(log_file)
|
64 |
+
if not isinstance(logs, pd.DataFrame) or logs.empty:
|
65 |
+
return "Invalid log file format. Please upload a JSON array of log entries."
|
66 |
+
except ValueError as e:
|
67 |
+
return f"Error reading JSON file: {str(e)}"
|
68 |
|
69 |
+
# Detect anomalies
|
70 |
+
anomalies = detect_anomaly(logs)
|
71 |
+
|
72 |
+
# Predict failures using device metrics
|
73 |
+
failure_pred = predict_failure(metrics)
|
74 |
+
|
75 |
return f"Anomalies Detected: {anomalies}, Failure Prediction: {failure_pred}"
|
76 |
|
77 |
+
# Gradio interface
|
78 |
iface = gr.Interface(fn=process_logs_and_predict,
|
79 |
inputs=["file", "json"],
|
80 |
outputs="text",
|
81 |
title="Cisco Device Monitoring",
|
82 |
description="Upload log files to detect anomalies and predict potential device failures.")
|
|
|
|
|
83 |
iface.launch()
|