File size: 10,860 Bytes
95b1b47
 
a45c033
95b1b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import string 
from tqdm import tqdm
# import pickle

import scipy
import numpy as np
from numpy import linalg as LA
from sklearn.decomposition import PCA

# Experiment 1
WEAT_words = {
'A':['John', 'Paul', 'Mike', 'Kevin', 'Steve', 'Greg', 'Jeff', 'Bill'], 
'B':['Amy', 'Joan', 'Lisa', 'Sarah', 'Diana', 'Kate', 'Ann', 'Donna'],
'C':['executive', 'management', 'professional', 'corporation', 'salary', 'office', 'business', 'career'],
'D':['home', 'parents', 'children', 'family', 'cousins', 'marriage', 'wedding', 'relatives'],
'E':['math', 'algebra', 'geometry', 'calculus', 'equations', 'computation', 'numbers', 'addition'],
'F':['poetry', 'art', 'dance', 'literature', 'novel', 'symphony', 'drama', 'sculpture'],
'G':['science', 'technology', 'physics', 'chemistry', 'einstein', 'nasa', 'experiment', 'astronomy'],
'H':['poetry', 'art', 'shakespeare', 'dance', 'literature', 'novel', 'symphony', 'drama'],
}


def has_punct(w):
    
    if any([c in string.punctuation for c in w]):
        return True
    return False

def has_digit(w):
    
    if any([c in '0123456789' for c in w]):
        return True
    return False

def limit_vocab(wv, w2i, vocab, exclude = None):
    vocab_limited = []
    for w in tqdm(vocab[:50000]): 
        if w.lower() != w:
            continue
        if len(w) >= 20:
            continue
        if has_digit(w):
            continue
        if '_' in w:
            p = [has_punct(subw) for subw in w.split('_')]
            if not any(p):
                vocab_limited.append(w)
            continue
        if has_punct(w):
            continue
        vocab_limited.append(w)
    
    if exclude:
        vocab_limited = list(set(vocab_limited) - set(exclude))
    
    print("size of vocabulary:", len(vocab_limited))
    
    wv_limited = np.zeros((len(vocab_limited), len(wv[0, :])))
    for i,w in enumerate(vocab_limited):
        wv_limited[i,:] = wv[w2i[w],:]
    
    w2i_limited = {w: i for i, w in enumerate(vocab_limited)}
    
    return vocab_limited, wv_limited, w2i_limited

def norm_stand(wv):
    W_norm = np.zeros(wv.shape)
    d = (np.sum(wv ** 2, 1) ** (0.5))
    W_norm = (wv.T / d).T
    return W_norm

def normalize(wv):
    
    # normalize vectors
    norms = np.apply_along_axis(LA.norm, 1, wv)
    wv = wv / norms[:, np.newaxis]
    return wv


def topK(w, wv, w2i, vocab, k=10):
    
    # extract the word vector for word w
    idx = w2i[w]
    vec = wv[idx, :]
    
    # compute similarity of w with all words in the vocabulary
    sim = wv.dot(vec)
#     sim = []
#     for i in range(len(wv)):
#         sim.append(1-scipy.spatial.distance.cosine(wv[i, :], vec))
#     sim = np.array(sim)
        
    # sort similarities by descending order
    sort_sim = (sim.argsort())[::-1]

    # choose topK
    best = sort_sim[:(k+1)]

    return [vocab[i] for i in best if i!=idx]


def similarity(w1, w2, wv, w2i):
    
    i1 = w2i[w1]
    i2 = w2i[w2]
    vec1 = wv[i1, :]
    vec2 = wv[i2, :]

    return 1-scipy.spatial.distance.cosine(vec1, vec2)



def drop(u, v):
    return u - v * u.dot(v) / v.dot(v)

from sklearn.decomposition import PCA
from sklearn import preprocessing

def doPCA(pairs, wv, w2i):
        
    matrix = []
    cnt = 0
    
    if type(pairs[0]) is list:
        for a, b in pairs:
            if not (a in w2i and b in w2i): continue
            center = (wv[w2i[a], :] + wv[w2i[b], :])/2
            matrix.append(wv[w2i[a], :] - center)
            matrix.append(wv[w2i[b], :] - center)
            cnt += 1
    else:
        for a in pairs:
            if not (a in w2i): continue
            matrix.append(wv[w2i[a], :])
            cnt += 1
        
        embeds = np.array(matrix)
        wv_mean = np.mean(np.array(embeds), axis=0)
        wv_hat = np.zeros(embeds.shape).astype(float)
    
        for i in range(len(embeds)):
            wv_hat[i, :] = embeds[i, :] - wv_mean
        matrix = wv_hat
            
    matrix = np.array(matrix)
    pca = PCA()
    pca.fit(matrix)
    print('pairs used in PCA: ', cnt)
    return pca

# get tuples of biases and counts of masculine/feminine NN for each word (for bias-by-neighbors)
import operator
def bias_by_neighbors(wv, w2i, vocab, gender_bias_bef, size, neighbours_num = 100):
    
    tuples = []
    
    sorted_g = sorted(gender_bias_bef.items(), key=operator.itemgetter(1))
    female = [item[0] for item in sorted_g[:size]]
    male = [item[0] for item in sorted_g[-size:]]
#     vocab = male + female
    selected = female + male if size > 0 else vocab
    
    for w in selected:
        
        top = topK(w, wv, w2i, vocab, k=neighbours_num+5)[:neighbours_num]

        m = 0
        f = 0    
        for t in top:
            if gender_bias_bef[t] > 0:
                m+=1
            else:
                f+=1
            
        tuples.append((w, gender_bias_bef[w], m, f))

    return tuples

def get_tuples_prof(wv, w2i, vocab,  words, gender_bias_dict):
    
    wv = normalize(wv)
    
    tuples = []
    for w in words:
        if w not in gender_bias_dict:
            continue
            
        top = topK(w, wv, w2i, vocab, k=105)[:100]
            
        m = 0
        f = 0  
        for t in top:          
            if gender_bias_dict[t] > 0:
                m+=1
            else:
                f+=1
                
        tuples.append((w, gender_bias_dict[w], m, f))
        
    return tuples

# compute correlation between bias-by-projection and bias-by-neighbors

import scipy.stats

def pearson(a,b):
   
    return scipy.stats.pearsonr(a,b)

def compute_corr(tuples, i1, i2):
    
    a = []
    b = []
    for t in tuples:
        a.append(t[i1])
        b.append(t[i2])
    assert(len(a)==len(b))    
    print('pearson: ', scipy.stats.pearsonr(a,b))
    print('spearman: ', scipy.stats.spearmanr(a, b))
    
# Auxiliary finctions

from sklearn.cluster import KMeans
from sklearn.manifold import TSNE

def visualize(vectors, y_true, y_pred, ax, title, random_state, num_clusters = 2):
    
    # perform TSNE
    
    X_embedded = TSNE(n_components=2, random_state=random_state).fit_transform(vectors)
    for x,p,y in zip(X_embedded, y_pred, y_true):
        if p:
            if y:
                ax.scatter(x[0], x[1], marker = '.', c = 'c')
            else:
                ax.scatter(x[0], x[1], marker = 'x', c = 'c')
        else:
            if y:
                ax.scatter(x[0], x[1], marker = '.', c = 'darkviolet')
            else:
                ax.scatter(x[0], x[1], marker = 'x', c = 'darkviolet')
                        
    
    ax.text(.01, .9, title ,transform=ax.transAxes, fontsize=15)

    
def extract_vectors(words, wv, w2i):
    
    X = [wv[w2i[x],:] for x in words]
    
    return X


def cluster_and_visualize(words, X, random_state, y_true, num=2):
    
    y_pred = KMeans(n_clusters=num, random_state=random_state).fit_predict(X)
#     fig, axs = plt.subplots(figsize=(6, 3))
#     visualize(X, y_true, y_pred, axs, 'Original', random_state)
    correct = [1 if item1 == item2 else 0 for (item1,item2) in zip(y_true, y_pred) ]
    print('precision', max(sum(correct)/float(len(correct)), 1 - sum(correct)/float(len(correct))))

    
import scipy.stats
from sklearn import svm
def train_and_predict(wv, w2i, vocab, size_train, size_test, males, females):
    
    X_train = [wv[w2i[w],:] for w in males[:size_train]+females[:size_train]]
    Y_train = [1]*size_train + [0]*size_train
    X_test = [wv[w2i[w],:] for w in males[size_train:]+females[size_train:]]
    Y_test = [1]*size_test + [0]*size_test

    clf = svm.SVC(gamma='auto')
    clf.fit(X_train, Y_train)

    preds = clf.predict(X_test)

    accuracy = [1 if y==z else 0 for y,z in zip(preds, Y_test)]
    acc = float(sum(accuracy))/len(accuracy)
    print('accuracy:', float(sum(accuracy))/len(accuracy))
    
    return acc
    
    
# Auxiliary functions for experiments by Caliskan et al.

import scipy
import scipy.misc as misc
import itertools


def s_word(w, A, B, wv, w2i, vocab, all_s_words):
    
    if w in all_s_words:
        return all_s_words[w]
    
    mean_a = []
    mean_b = []
    
    for a in A:
        mean_a.append(similarity(w, a, wv, w2i))
    for b in B:
        mean_b.append(similarity(w, b, wv, w2i))
        
    mean_a = sum(mean_a)/float(len(mean_a))
    mean_b = sum(mean_b)/float(len(mean_b))
    
    all_s_words[w] = mean_a - mean_b

    return all_s_words[w]


def s_group(X, Y, A, B,  wv, w2i, vocab, all_s_words):
    
    total = 0
    for x in X:
        total += s_word(x, A, B,  wv, w2i, vocab, all_s_words)
    for y in Y:
        total -= s_word(y, A, B,  wv, w2i, vocab, all_s_words)
        
    return total


def p_value_exhust(X, Y, A, B,  wv, w2i, vocab):
    
    if len(X) > 10:
        print('might take too long, use sampled version: p_value')
        return
    
    assert(len(X) == len(Y))
    
    all_s_words = {}
    s_orig = s_group(X, Y, A, B, wv, w2i, vocab, all_s_words) 
    
    union = set(X+Y)
    subset_size = int(len(union)/2)
    
    larger = 0
    total = 0
    for subset in set(itertools.combinations(union, subset_size)):
        total += 1
        Xi = list(set(subset))
        Yi = list(union - set(subset))
        if s_group(Xi, Yi, A, B, wv, w2i, vocab, all_s_words) > s_orig:
            larger += 1
    print('num of samples', total)
    return larger/float(total)

def association_diff(t, A, B, wv, w2i):
    
    mean_a = []
    mean_b = []
    
    for a in A:
        mean_a.append(similarity(t, a, wv, w2i))
    for b in B:
        mean_b.append(similarity(t, b, wv, w2i))
        
    mean_a = sum(mean_a)/float(len(mean_a))
    mean_b = sum(mean_b)/float(len(mean_b))
    
    return mean_a - mean_b

def effect_size(X, Y, A, B,  wv, w2i, vocab):
    
    assert(len(X) == len(Y))
    assert(len(A) == len(B))
    
    norm_x = []
    norm_y = []
    
    for x in X:
        norm_x.append(association_diff(x, A, B, wv, w2i))
    for y in Y:
        norm_y.append(association_diff(y, A, B, wv, w2i))
    
    std = np.std(norm_x+norm_y, ddof=1)
    norm_x = sum(norm_x) / float(len(norm_x))
    norm_y = sum(norm_y) / float(len(norm_y))
    
    return (norm_x-norm_y)/std


def p_value_sample(X, Y, A, B, wv, w2i, vocab):
    
    random.seed(10)
    np.random.seed(10)
    all_s_words = {}
    
    assert(len(X) == len(Y))
    length = len(X)
    
    s_orig = s_group(X, Y, A, B,  wv, w2i, vocab, all_s_words) 
    
    num_of_samples = min(1000000, int(scipy.special.comb(length*2,length)*100))
    print('num of samples', num_of_samples)
    larger = 0
    for i in range(num_of_samples):
        permute = np.random.permutation(X+Y)
        Xi = permute[:length]
        Yi = permute[length:]
        if s_group(Xi, Yi, A, B, space, all_s_words) > s_orig:
            larger += 1
    
    return larger/float(num_of_samples)