File size: 3,085 Bytes
5a18d50
 
 
 
1ef908a
5a18d50
fd74ac9
 
 
 
 
 
5a18d50
 
 
fd74ac9
5a18d50
fd74ac9
5a18d50
 
 
fd74ac9
 
 
5a18d50
 
fd74ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a18d50
 
 
fd74ac9
 
 
 
 
 
 
5a18d50
 
 
 
 
 
 
 
 
 
 
 
fd74ac9
5a18d50
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st
from groq import Groq

# Define the API key here
GROQ_API_KEY = "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"

# Initialize session state for chat history
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [
        {"role": "system", "content": "you are a helpful assistant. Take the input from the users and try to provide as detailed response as possible. Provide proper examples to help the user. Try to mention references or provide citations to make it more detail-oriented."}
    ]

# Define function to fetch response
def fetch_response(user_input):
    client = Groq(api_key=GROQ_API_KEY)
    st.session_state.chat_history.append({"role": "user", "content": user_input})
    chat_completion = client.chat.completions.create(
        messages=st.session_state.chat_history,
        model="mixtral-8x7b-32768",
        stream=False
    )
    response = chat_completion.choices[0].message.content
    st.session_state.chat_history.append({"role": "assistant", "content": response})
    return response

# Streamlit app
st.set_page_config(page_title="Fastest AI Chatbot", page_icon="🤖", layout="wide")

st.markdown(
    """
    <style>
    body {
        background-color: #2a2a2a;
        color: #e1e1e1;
        font-family: 'Courier New', Courier, monospace;
    }
    .css-18e3th9 {
        padding: 2rem;
    }
    .css-1d391kg {
        background: linear-gradient(145deg, #3e3e3e, #2a2a2a);
        box-shadow: 20px 20px 60px #232323, -20px -20px 60px #323232;
        border-radius: 15px;
        padding: 2rem;
    }
    .stButton>button {
        background: linear-gradient(145deg, #5e5e5e, #3a3a3a);
        box-shadow: 8px 8px 16px #232323, -8px -8px 16px #323232;
        color: #e1e1e1;
        border: none;
        border-radius: 12px;
        padding: 0.5rem 2rem;
        font-size: 1.2rem;
        margin-top: 1rem;
    }
    .stTextInput>div>div>input {
        background: linear-gradient(145deg, #5e5e5e, #3a3a3a);
        box-shadow: inset 8px 8px 16px #232323, inset -8px -8px 16px #323232;
        border: none;
        border-radius: 12px;
        color: #e1e1e1;
        padding: 1rem;
        font-size: 1rem;
    }
    footer {
        color: #e1e1e1;
        font-size: small;
        text-align: right;
        margin-top: 2rem;
    }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("Fastest AI Chatbot")
st.write("Ask a question and get a response.")

# Display chat history
for chat in st.session_state.chat_history:
    if chat["role"] == "user":
        st.markdown(f"**You:** {chat['content']}")
    elif chat["role"] == "assistant":
        st.markdown(f"**AI:** {chat['content']}")

# Text input for user's question
user_input = st.text_input("Enter your question here:")

# Button to trigger response
if st.button("Get Response"):
    # Fetch and display response
    response = fetch_response(user_input)
    st.write("Response:", response)

# Footer
st.markdown(
    """
    <footer>
        By DL TITANS
    </footer>
    """,
    unsafe_allow_html=True
)