Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,86 @@ from gradio_client import Client, handle_file
|
|
3 |
import requests
|
4 |
from PIL import Image
|
5 |
import io
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Componentes da interface
|
31 |
-
|
32 |
-
question_input = gr.Textbox(label="Question", placeholder="Ask something about the
|
33 |
seed_slider = gr.Slider(0, 100, value=42, label="Seed")
|
34 |
top_p_slider = gr.Slider(0, 1, value=0.95, label="Top-p")
|
35 |
temp_slider = gr.Slider(0, 1, value=0.1, label="Temperature")
|
@@ -38,7 +91,7 @@ temp_slider = gr.Slider(0, 1, value=0.1, label="Temperature")
|
|
38 |
demo = gr.Interface(
|
39 |
fn=predict,
|
40 |
inputs=[
|
41 |
-
|
42 |
question_input,
|
43 |
seed_slider,
|
44 |
top_p_slider,
|
@@ -46,9 +99,10 @@ demo = gr.Interface(
|
|
46 |
],
|
47 |
outputs=gr.Textbox(label="Answer"),
|
48 |
title="Janus-Pro-7B Multimodal Demo",
|
49 |
-
description="Ask questions about images using the Janus-Pro-7B model",
|
50 |
examples=[
|
51 |
-
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", "What's in this image?", 42, 0.95, 0.1]
|
|
|
52 |
]
|
53 |
)
|
54 |
|
|
|
3 |
import requests
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
+
import fitz # PyMuPDF
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
|
10 |
+
# Função para extrair texto e imagens de um PDF
|
11 |
+
def extract_from_pdf(pdf_path):
|
12 |
+
try:
|
13 |
+
# Abre o PDF
|
14 |
+
doc = fitz.open(pdf_path)
|
15 |
+
extracted_text = ""
|
16 |
+
extracted_images = []
|
17 |
+
|
18 |
+
# Itera sobre as páginas do PDF
|
19 |
+
for page_num in range(len(doc)):
|
20 |
+
page = doc.load_page(page_num)
|
21 |
+
|
22 |
+
# Extrai texto
|
23 |
+
extracted_text += page.get_text()
|
24 |
+
|
25 |
+
# Extrai imagens
|
26 |
+
image_list = page.get_images(full=True)
|
27 |
+
for img_index, img in enumerate(image_list):
|
28 |
+
xref = img[0]
|
29 |
+
base_image = doc.extract_image(xref)
|
30 |
+
image_bytes = base_image["image"]
|
31 |
+
image = Image.open(io.BytesIO(image_bytes))
|
32 |
+
extracted_images.append(image)
|
33 |
+
|
34 |
+
return extracted_text, extracted_images
|
35 |
+
except Exception as e:
|
36 |
+
return f"Erro ao processar PDF: {str(e)}", []
|
37 |
+
|
38 |
+
# Função principal para fazer a predição
|
39 |
+
def predict(file, question, seed, top_p, temperature):
|
40 |
+
try:
|
41 |
+
# Verifica se o arquivo é um PDF
|
42 |
+
if file.endswith(".pdf"):
|
43 |
+
# Extrai texto e imagens do PDF
|
44 |
+
extracted_text, extracted_images = extract_from_pdf(file)
|
45 |
+
|
46 |
+
# Se houver imagens, processa a primeira imagem
|
47 |
+
if extracted_images:
|
48 |
+
image = extracted_images[0]
|
49 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
|
50 |
+
image.save(tmp_file.name, format="PNG")
|
51 |
+
img_path = tmp_file.name
|
52 |
+
else:
|
53 |
+
return "Nenhuma imagem encontrada no PDF."
|
54 |
+
|
55 |
+
# Se houver texto, adiciona ao prompt
|
56 |
+
if extracted_text:
|
57 |
+
question = f"Texto extraído do PDF:\n{extracted_text}\n\nPergunta: {question}"
|
58 |
+
else:
|
59 |
+
# Se não for PDF, trata como imagem
|
60 |
+
if file.startswith('http'):
|
61 |
+
response = requests.get(file)
|
62 |
+
img_path = handle_file(io.BytesIO(response.content))
|
63 |
+
else:
|
64 |
+
img_path = handle_file(file)
|
65 |
+
|
66 |
+
# Inicializa o cliente do Gradio
|
67 |
+
client = Client("deepseek-ai/Janus-Pro-7B")
|
68 |
+
|
69 |
+
# Faz a predição
|
70 |
+
result = client.predict(
|
71 |
+
image=img_path,
|
72 |
+
question=question,
|
73 |
+
seed=seed,
|
74 |
+
top_p=top_p,
|
75 |
+
temperature=temperature,
|
76 |
+
api_name="/multimodal_understanding"
|
77 |
+
)
|
78 |
+
|
79 |
+
return result
|
80 |
+
except Exception as e:
|
81 |
+
return f"Erro durante a predição: {str(e)}"
|
82 |
|
83 |
# Componentes da interface
|
84 |
+
file_input = gr.File(label="Upload PDF or Image", file_types=[".pdf", ".png", ".jpg", ".jpeg"])
|
85 |
+
question_input = gr.Textbox(label="Question", placeholder="Ask something about the file...")
|
86 |
seed_slider = gr.Slider(0, 100, value=42, label="Seed")
|
87 |
top_p_slider = gr.Slider(0, 1, value=0.95, label="Top-p")
|
88 |
temp_slider = gr.Slider(0, 1, value=0.1, label="Temperature")
|
|
|
91 |
demo = gr.Interface(
|
92 |
fn=predict,
|
93 |
inputs=[
|
94 |
+
file_input,
|
95 |
question_input,
|
96 |
seed_slider,
|
97 |
top_p_slider,
|
|
|
99 |
],
|
100 |
outputs=gr.Textbox(label="Answer"),
|
101 |
title="Janus-Pro-7B Multimodal Demo",
|
102 |
+
description="Ask questions about PDFs or images using the Janus-Pro-7B model",
|
103 |
examples=[
|
104 |
+
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", "What's in this image?", 42, 0.95, 0.1],
|
105 |
+
["https://example.com/sample.pdf", "Summarize the text in this PDF.", 42, 0.95, 0.1]
|
106 |
]
|
107 |
)
|
108 |
|