|
""" |
|
ContextCluster implementation |
|
# -------------------------------------------------------- |
|
# Context Cluster -- Image as Set of Points, ICLR'23 Oral |
|
# Licensed under The MIT License [see LICENSE for details] |
|
# Written by Xu Ma ([email protected]) |
|
# -------------------------------------------------------- |
|
""" |
|
import os |
|
import copy |
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.models.layers import DropPath, trunc_normal_ |
|
from timm.models.registry import register_model |
|
from timm.layers.helpers import to_2tuple |
|
from einops import rearrange |
|
import torch.nn.functional as F |
|
|
|
try: |
|
from mmseg.models.builder import BACKBONES as seg_BACKBONES |
|
from mmseg.utils import get_root_logger |
|
from mmcv.runner import _load_checkpoint |
|
|
|
has_mmseg = True |
|
except ImportError: |
|
print("If for semantic segmentation, please install mmsegmentation first") |
|
has_mmseg = False |
|
|
|
try: |
|
from mmdet.models.builder import BACKBONES as det_BACKBONES |
|
from mmdet.utils import get_root_logger |
|
from mmcv.runner import _load_checkpoint |
|
|
|
has_mmdet = True |
|
except ImportError: |
|
print("If for detection, please install mmdetection first") |
|
has_mmdet = False |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), |
|
'crop_pct': .95, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'model_small': _cfg(crop_pct=0.9), |
|
'model_medium': _cfg(crop_pct=0.95), |
|
} |
|
|
|
|
|
class PointRecuder(nn.Module): |
|
""" |
|
Point Reducer is implemented by a layer of conv since it is mathmatically equal. |
|
Input: tensor in shape [B, in_chans, H, W] |
|
Output: tensor in shape [B, embed_dim, H/stride, W/stride] |
|
""" |
|
|
|
def __init__(self, patch_size=16, stride=16, padding=0, |
|
in_chans=3, embed_dim=768, norm_layer=None): |
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
stride = to_2tuple(stride) |
|
padding = to_2tuple(padding) |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, |
|
stride=stride, padding=padding) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class GroupNorm(nn.GroupNorm): |
|
""" |
|
Group Normalization with 1 group. |
|
Input: tensor in shape [B, C, H, W] |
|
""" |
|
|
|
def __init__(self, num_channels, **kwargs): |
|
super().__init__(1, num_channels, **kwargs) |
|
|
|
|
|
def pairwise_cos_sim(x1: torch.Tensor, x2: torch.Tensor): |
|
""" |
|
return pair-wise similarity matrix between two tensors |
|
:param x1: [B,...,M,D] |
|
:param x2: [B,...,N,D] |
|
:return: similarity matrix [B,...,M,N] |
|
""" |
|
x1 = F.normalize(x1, dim=-1) |
|
x2 = F.normalize(x2, dim=-1) |
|
|
|
sim = torch.matmul(x1, x2.transpose(-2, -1)) |
|
return sim |
|
|
|
|
|
class Cluster(nn.Module): |
|
def __init__(self, dim, out_dim, proposal_w=2, proposal_h=2, fold_w=2, fold_h=2, heads=4, head_dim=24, |
|
return_center=False): |
|
""" |
|
|
|
:param dim: channel nubmer |
|
:param out_dim: channel nubmer |
|
:param proposal_w: the sqrt(proposals) value, we can also set a different value |
|
:param proposal_h: the sqrt(proposals) value, we can also set a different value |
|
:param fold_w: the sqrt(number of regions) value, we can also set a different value |
|
:param fold_h: the sqrt(number of regions) value, we can also set a different value |
|
:param heads: heads number in context cluster |
|
:param head_dim: dimension of each head in context cluster |
|
:param return_center: if just return centers instead of dispatching back (deprecated). |
|
""" |
|
super().__init__() |
|
self.heads = heads |
|
self.head_dim = head_dim |
|
self.f = nn.Conv2d(dim, heads * head_dim, kernel_size=1) |
|
self.proj = nn.Conv2d(heads * head_dim, out_dim, kernel_size=1) |
|
self.v = nn.Conv2d(dim, heads * head_dim, kernel_size=1) |
|
self.sim_alpha = nn.Parameter(torch.ones(1)) |
|
self.sim_beta = nn.Parameter(torch.zeros(1)) |
|
self.centers_proposal = nn.AdaptiveAvgPool2d((proposal_w, proposal_h)) |
|
self.fold_w = fold_w |
|
self.fold_h = fold_h |
|
self.return_center = return_center |
|
|
|
def forward(self, x): |
|
value = self.v(x) |
|
x = self.f(x) |
|
x = rearrange(x, "b (e c) w h -> (b e) c w h", e=self.heads) |
|
value = rearrange(value, "b (e c) w h -> (b e) c w h", e=self.heads) |
|
if self.fold_w > 1 and self.fold_h > 1: |
|
|
|
b0, c0, w0, h0 = x.shape |
|
assert w0 % self.fold_w == 0 and h0 % self.fold_h == 0, \ |
|
f"Ensure the feature map size ({w0}*{h0}) can be divided by fold {self.fold_w}*{self.fold_h}" |
|
x = rearrange(x, "b c (f1 w) (f2 h) -> (b f1 f2) c w h", f1=self.fold_w, |
|
f2=self.fold_h) |
|
value = rearrange(value, "b c (f1 w) (f2 h) -> (b f1 f2) c w h", f1=self.fold_w, f2=self.fold_h) |
|
b, c, w, h = x.shape |
|
centers = self.centers_proposal(x) |
|
value_centers = rearrange(self.centers_proposal(value), 'b c w h -> b (w h) c') |
|
b, c, ww, hh = centers.shape |
|
sim = torch.sigmoid( |
|
self.sim_beta + |
|
self.sim_alpha * pairwise_cos_sim( |
|
centers.reshape(b, c, -1).permute(0, 2, 1), |
|
x.reshape(b, c, -1).permute(0, 2, 1) |
|
) |
|
) |
|
|
|
sim_max, sim_max_idx = sim.max(dim=1, keepdim=True) |
|
mask = torch.zeros_like(sim) |
|
mask.scatter_(1, sim_max_idx, 1.) |
|
sim = sim * mask |
|
value2 = rearrange(value, 'b c w h -> b (w h) c') |
|
|
|
|
|
|
|
|
|
|
|
|
|
out = ((value2.unsqueeze(dim=1) * sim.unsqueeze(dim=-1)).sum(dim=2) + value_centers) / ( |
|
mask.sum(dim=-1, keepdim=True) + 1.0) |
|
|
|
if self.return_center: |
|
out = rearrange(out, "b (w h) c -> b c w h", w=ww) |
|
else: |
|
|
|
out = (out.unsqueeze(dim=2) * sim.unsqueeze(dim=-1)).sum(dim=1) |
|
out = rearrange(out, "b (w h) c -> b c w h", w=w) |
|
|
|
if self.fold_w > 1 and self.fold_h > 1: |
|
|
|
out = rearrange(out, "(b f1 f2) c w h -> b c (f1 w) (f2 h)", f1=self.fold_w, f2=self.fold_h) |
|
out = rearrange(out, "(b e) c w h -> b (e c) w h", e=self.heads) |
|
out = self.proj(out) |
|
return out |
|
|
|
|
|
class Mlp(nn.Module): |
|
""" |
|
Implementation of MLP with nn.Linear (would be slightly faster in both training and inference). |
|
Input: tensor with shape [B, C, H, W] |
|
""" |
|
|
|
def __init__(self, in_features, hidden_features=None, |
|
out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x.permute(0, 2, 3, 1)) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x).permute(0, 3, 1, 2) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class ClusterBlock(nn.Module): |
|
""" |
|
Implementation of one block. |
|
--dim: embedding dim |
|
--mlp_ratio: mlp expansion ratio |
|
--act_layer: activation |
|
--norm_layer: normalization |
|
--drop: dropout rate |
|
--drop path: Stochastic Depth, |
|
refer to https://arxiv.org/abs/1603.09382 |
|
--use_layer_scale, --layer_scale_init_value: LayerScale, |
|
refer to https://arxiv.org/abs/2103.17239 |
|
""" |
|
|
|
def __init__(self, dim, mlp_ratio=4., |
|
act_layer=nn.GELU, norm_layer=GroupNorm, |
|
drop=0., drop_path=0., |
|
use_layer_scale=True, layer_scale_init_value=1e-5, |
|
|
|
proposal_w=2, proposal_h=2, fold_w=2, fold_h=2, heads=4, head_dim=24, return_center=False): |
|
|
|
super().__init__() |
|
|
|
self.norm1 = norm_layer(dim) |
|
|
|
self.token_mixer = Cluster(dim=dim, out_dim=dim, proposal_w=proposal_w, proposal_h=proposal_h, |
|
fold_w=fold_w, fold_h=fold_h, heads=heads, head_dim=head_dim, return_center=False) |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, drop=drop) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) |
|
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) |
|
|
|
def forward(self, x): |
|
if self.use_layer_scale: |
|
x = x + self.drop_path( |
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) |
|
* self.token_mixer(self.norm1(x))) |
|
x = x + self.drop_path( |
|
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) |
|
* self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.token_mixer(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
def basic_blocks(dim, index, layers, |
|
mlp_ratio=4., |
|
act_layer=nn.GELU, norm_layer=GroupNorm, |
|
drop_rate=.0, drop_path_rate=0., |
|
use_layer_scale=True, layer_scale_init_value=1e-5, |
|
|
|
proposal_w=2, proposal_h=2, fold_w=2, fold_h=2, heads=4, head_dim=24, return_center=False): |
|
blocks = [] |
|
for block_idx in range(layers[index]): |
|
block_dpr = drop_path_rate * ( block_idx + sum(layers[:index])) / (sum(layers) - 1) |
|
blocks.append(ClusterBlock( |
|
dim, mlp_ratio=mlp_ratio, |
|
act_layer=act_layer, norm_layer=norm_layer, |
|
drop=drop_rate, drop_path=block_dpr, |
|
use_layer_scale=use_layer_scale, |
|
layer_scale_init_value=layer_scale_init_value, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, return_center=False |
|
)) |
|
blocks = nn.Sequential(*blocks) |
|
|
|
return blocks |
|
|
|
|
|
class ContextCluster(nn.Module): |
|
""" |
|
ContextCluster, the main class of our model |
|
--layers: [x,x,x,x], number of blocks for the 4 stages |
|
--embed_dims, --mlp_ratios, the embedding dims, mlp ratios |
|
--downsamples: flags to apply downsampling or not |
|
--norm_layer, --act_layer: define the types of normalization and activation |
|
--num_classes: number of classes for the image classification |
|
--in_patch_size, --in_stride, --in_pad: specify the patch embedding |
|
for the input image |
|
--down_patch_size --down_stride --down_pad: |
|
specify the downsample (patch embed.) |
|
--fork_feat: whether output features of the 4 stages, for dense prediction |
|
--init_cfg, --pretrained: |
|
for mmdetection and mmsegmentation to load pretrained weights |
|
""" |
|
|
|
def __init__(self, layers, embed_dims=None, |
|
mlp_ratios=None, downsamples=None, |
|
norm_layer=nn.BatchNorm2d, act_layer=nn.GELU, |
|
num_classes=1000, |
|
in_patch_size=4, in_stride=4, in_pad=0, |
|
down_patch_size=2, down_stride=2, down_pad=0, |
|
drop_rate=0., drop_path_rate=0., |
|
use_layer_scale=True, layer_scale_init_value=1e-5, |
|
fork_feat=False, |
|
init_cfg=None, |
|
pretrained=None, |
|
|
|
proposal_w=[2, 2, 2, 2], proposal_h=[2, 2, 2, 2], fold_w=[8, 4, 2, 1], fold_h=[8, 4, 2, 1], |
|
heads=[2, 4, 6, 8], head_dim=[16, 16, 32, 32], |
|
**kwargs): |
|
|
|
super().__init__() |
|
|
|
if not fork_feat: |
|
self.num_classes = num_classes |
|
self.fork_feat = fork_feat |
|
|
|
self.patch_embed = PointRecuder( |
|
patch_size=in_patch_size, stride=in_stride, padding=in_pad, |
|
in_chans=5, embed_dim=embed_dims[0]) |
|
|
|
|
|
network = [] |
|
for i in range(len(layers)): |
|
stage = basic_blocks(embed_dims[i], i, layers, |
|
mlp_ratio=mlp_ratios[i], |
|
act_layer=act_layer, norm_layer=norm_layer, |
|
drop_rate=drop_rate, |
|
drop_path_rate=drop_path_rate, |
|
use_layer_scale=use_layer_scale, |
|
layer_scale_init_value=layer_scale_init_value, |
|
proposal_w=proposal_w[i], proposal_h=proposal_h[i], |
|
fold_w=fold_w[i], fold_h=fold_h[i], heads=heads[i], head_dim=head_dim[i], |
|
return_center=False |
|
) |
|
network.append(stage) |
|
if i >= len(layers) - 1: |
|
break |
|
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]: |
|
|
|
network.append( |
|
PointRecuder( |
|
patch_size=down_patch_size, stride=down_stride, |
|
padding=down_pad, |
|
in_chans=embed_dims[i], embed_dim=embed_dims[i + 1] |
|
) |
|
) |
|
|
|
self.network = nn.ModuleList(network) |
|
|
|
if self.fork_feat: |
|
|
|
self.out_indices = [0, 2, 4, 6] |
|
for i_emb, i_layer in enumerate(self.out_indices): |
|
if i_emb == 0 and os.environ.get('FORK_LAST3', None): |
|
|
|
"""For RetinaNet, `start_level=1`. The first norm layer will not used. |
|
cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...` |
|
""" |
|
layer = nn.Identity() |
|
else: |
|
layer = norm_layer(embed_dims[i_emb]) |
|
layer_name = f'norm{i_layer}' |
|
self.add_module(layer_name, layer) |
|
else: |
|
|
|
self.norm = norm_layer(embed_dims[-1]) |
|
self.head = nn.Linear( |
|
embed_dims[-1], num_classes) if num_classes > 0 \ |
|
else nn.Identity() |
|
|
|
self.apply(self.cls_init_weights) |
|
|
|
self.init_cfg = copy.deepcopy(init_cfg) |
|
|
|
if self.fork_feat and ( |
|
self.init_cfg is not None or pretrained is not None): |
|
self.init_weights() |
|
|
|
|
|
def cls_init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
def init_weights(self, pretrained=None): |
|
logger = get_root_logger() |
|
if self.init_cfg is None and pretrained is None: |
|
logger.warn(f'No pre-trained weights for ' |
|
f'{self.__class__.__name__}, ' |
|
f'training start from scratch') |
|
pass |
|
else: |
|
assert 'checkpoint' in self.init_cfg, f'Only support ' \ |
|
f'specify `Pretrained` in ' \ |
|
f'`init_cfg` in ' \ |
|
f'{self.__class__.__name__} ' |
|
if self.init_cfg is not None: |
|
ckpt_path = self.init_cfg['checkpoint'] |
|
elif pretrained is not None: |
|
ckpt_path = pretrained |
|
|
|
ckpt = _load_checkpoint( |
|
ckpt_path, logger=logger, map_location='cpu') |
|
if 'state_dict' in ckpt: |
|
_state_dict = ckpt['state_dict'] |
|
elif 'model' in ckpt: |
|
_state_dict = ckpt['model'] |
|
else: |
|
_state_dict = ckpt |
|
|
|
state_dict = _state_dict |
|
missing_keys, unexpected_keys = \ |
|
self.load_state_dict(state_dict, False) |
|
|
|
|
|
|
|
|
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear( |
|
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_embeddings(self, x): |
|
_, c, img_w, img_h = x.shape |
|
|
|
|
|
range_w = torch.arange(0, img_w, step=1) / (img_w - 1.0) |
|
range_h = torch.arange(0, img_h, step=1) / (img_h - 1.0) |
|
fea_pos = torch.stack(torch.meshgrid(range_w, range_h, indexing='ij'), dim=-1).float() |
|
fea_pos = fea_pos.to(x.device) |
|
fea_pos = fea_pos - 0.5 |
|
pos = fea_pos.permute(2, 0, 1).unsqueeze(dim=0).expand(x.shape[0], -1, -1, -1) |
|
x = self.patch_embed(torch.cat([x, pos], dim=1)) |
|
return x |
|
|
|
def forward_tokens(self, x): |
|
outs = [] |
|
for idx, block in enumerate(self.network): |
|
x = block(x) |
|
if self.fork_feat and idx in self.out_indices: |
|
norm_layer = getattr(self, f'norm{idx}') |
|
x_out = norm_layer(x) |
|
outs.append(x_out) |
|
if self.fork_feat: |
|
|
|
return outs |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
|
|
x = self.forward_embeddings(x) |
|
|
|
x = self.forward_tokens(x) |
|
if self.fork_feat: |
|
|
|
return x |
|
x = self.norm(x) |
|
cls_out = self.head(x.mean([-2, -1])) |
|
|
|
return cls_out |
|
|
|
|
|
@register_model |
|
def coc_tiny(pretrained=False, **kwargs): |
|
layers = [3, 4, 5, 2] |
|
norm_layer = GroupNorm |
|
embed_dims = [32, 64, 196, 320] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w = [2, 2, 2, 2] |
|
proposal_h = [2, 2, 2, 2] |
|
fold_w = [8, 4, 2, 1] |
|
fold_h = [8, 4, 2, 1] |
|
heads = [4, 4, 8, 8] |
|
head_dim = [24, 24, 24, 24] |
|
down_patch_size = 3 |
|
down_pad = 1 |
|
model = ContextCluster( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size=down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
**kwargs) |
|
model.default_cfg = default_cfgs['model_small'] |
|
return model |
|
|
|
|
|
@register_model |
|
def coc_tiny2(pretrained=False, **kwargs): |
|
layers = [3, 4, 5, 2] |
|
norm_layer = GroupNorm |
|
embed_dims = [32, 64, 196, 320] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w = [4, 2, 7, 4] |
|
proposal_h = [4, 2, 7, 4] |
|
fold_w = [7, 7, 1, 1] |
|
fold_h = [7, 7, 1, 1] |
|
heads = [4, 4, 8, 8] |
|
head_dim = [24, 24, 24, 24] |
|
down_patch_size = 3 |
|
down_pad = 1 |
|
model = ContextCluster( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size=down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
**kwargs) |
|
model.default_cfg = default_cfgs['model_small'] |
|
return model |
|
|
|
|
|
@register_model |
|
def coc_small(pretrained=False, **kwargs): |
|
layers = [2, 2, 6, 2] |
|
norm_layer = GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w = [2, 2, 2, 2] |
|
proposal_h = [2, 2, 2, 2] |
|
fold_w = [8, 4, 2, 1] |
|
fold_h = [8, 4, 2, 1] |
|
heads = [4, 4, 8, 8] |
|
head_dim = [32, 32, 32, 32] |
|
down_patch_size = 3 |
|
down_pad = 1 |
|
model = ContextCluster( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size=down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
**kwargs) |
|
model.default_cfg = default_cfgs['model_small'] |
|
return model |
|
|
|
|
|
@register_model |
|
def coc_medium(pretrained=False, **kwargs): |
|
layers = [4, 4, 12, 4] |
|
norm_layer = GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w = [2, 2, 2, 2] |
|
proposal_h = [2, 2, 2, 2] |
|
fold_w = [8, 4, 2, 1] |
|
fold_h = [8, 4, 2, 1] |
|
heads = [6, 6, 12, 12] |
|
head_dim = [32, 32, 32, 32] |
|
down_patch_size = 3 |
|
down_pad = 1 |
|
model = ContextCluster( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size=down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
**kwargs) |
|
model.default_cfg = default_cfgs['model_small'] |
|
return model |
|
|
|
|
|
@register_model |
|
def coc_base_dim64(pretrained=False, **kwargs): |
|
layers = [6, 6, 24, 6] |
|
norm_layer = GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w = [2, 2, 2, 2] |
|
proposal_h = [2, 2, 2, 2] |
|
fold_w = [8, 4, 2, 1] |
|
fold_h = [8, 4, 2, 1] |
|
heads = [8, 8, 16, 16] |
|
head_dim = [32, 32, 32, 32] |
|
down_patch_size = 3 |
|
down_pad = 1 |
|
model = ContextCluster( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size=down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
**kwargs) |
|
model.default_cfg = default_cfgs['model_small'] |
|
return model |
|
|
|
|
|
@register_model |
|
def coc_base_dim96(pretrained=False, **kwargs): |
|
layers = [4, 4, 12, 4] |
|
norm_layer = GroupNorm |
|
embed_dims = [96, 192, 384, 768] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w = [2, 2, 2, 2] |
|
proposal_h = [2, 2, 2, 2] |
|
fold_w = [8, 4, 2, 1] |
|
fold_h = [8, 4, 2, 1] |
|
heads = [8, 8, 16, 16] |
|
head_dim = [32, 32, 32, 32] |
|
down_patch_size = 3 |
|
down_pad = 1 |
|
model = ContextCluster( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size=down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
**kwargs) |
|
model.default_cfg = default_cfgs['model_small'] |
|
return model |
|
|
|
|
|
""" |
|
Updated: add plain models (without region partition) for tiny, small, and base , etc. |
|
Re-trained with new implementation (PWconv->MLP for faster training and inference), achieve slightly better performance. |
|
""" |
|
@register_model |
|
def coc_tiny_plain(pretrained=False, **kwargs): |
|
|
|
layers = [3, 4, 5, 2] |
|
norm_layer = GroupNorm |
|
embed_dims = [32, 64, 196, 320] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w = [4, 4, 2, 2] |
|
proposal_h = [4, 4, 2, 2] |
|
fold_w = [1, 1, 1, 1] |
|
fold_h = [1, 1, 1, 1] |
|
heads = [4, 4, 8, 8] |
|
head_dim = [24, 24, 24, 24] |
|
down_patch_size = 3 |
|
down_pad = 1 |
|
model = ContextCluster( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size=down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
**kwargs) |
|
model.default_cfg = default_cfgs['model_small'] |
|
return model |
|
|
|
|
|
if has_mmdet: |
|
@seg_BACKBONES.register_module() |
|
@det_BACKBONES.register_module() |
|
class context_cluster_small_feat2(ContextCluster): |
|
def __init__(self, **kwargs): |
|
layers = [2, 2, 6, 2] |
|
norm_layer=GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w=[2,2,2,2] |
|
proposal_h=[2,2,2,2] |
|
fold_w=[8,4,2,1] |
|
fold_h=[8,4,2,1] |
|
heads=[4,4,8,8] |
|
head_dim=[32,32,32,32] |
|
down_patch_size=3 |
|
down_pad = 1 |
|
super().__init__( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size = down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
fork_feat=True, |
|
**kwargs) |
|
|
|
|
|
@seg_BACKBONES.register_module() |
|
@det_BACKBONES.register_module() |
|
class context_cluster_small_feat5(ContextCluster): |
|
def __init__(self, **kwargs): |
|
layers = [2, 2, 6, 2] |
|
norm_layer=GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w=[5,5,5,5] |
|
proposal_h=[5,5,5,5] |
|
fold_w=[8,4,2,1] |
|
fold_h=[8,4,2,1] |
|
heads=[4,4,8,8] |
|
head_dim=[32,32,32,32] |
|
down_patch_size=3 |
|
down_pad = 1 |
|
super().__init__( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size = down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
fork_feat=True, |
|
**kwargs) |
|
|
|
|
|
@seg_BACKBONES.register_module() |
|
@det_BACKBONES.register_module() |
|
class context_cluster_small_feat7(ContextCluster): |
|
def __init__(self, **kwargs): |
|
layers = [2, 2, 6, 2] |
|
norm_layer=GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w=[7,7,7,7] |
|
proposal_h=[7,7,7,7] |
|
fold_w=[8,4,2,1] |
|
fold_h=[8,4,2,1] |
|
heads=[4,4,8,8] |
|
head_dim=[32,32,32,32] |
|
down_patch_size=3 |
|
down_pad = 1 |
|
super().__init__( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size = down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
fork_feat=True, |
|
**kwargs) |
|
|
|
|
|
@seg_BACKBONES.register_module() |
|
@det_BACKBONES.register_module() |
|
class context_cluster_medium_feat2(ContextCluster): |
|
def __init__(self, **kwargs): |
|
layers = [4, 4, 12, 4] |
|
norm_layer=GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w=[2,2,2,2] |
|
proposal_h=[2,2,2,2] |
|
fold_w=[8,4,2,1] |
|
fold_h=[8,4,2,1] |
|
heads=[6,6,12,12] |
|
head_dim=[32,32,32,32] |
|
down_patch_size=3 |
|
down_pad = 1 |
|
super().__init__( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size = down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
fork_feat=True, |
|
**kwargs) |
|
|
|
|
|
@seg_BACKBONES.register_module() |
|
@det_BACKBONES.register_module() |
|
class context_cluster_medium_feat5(ContextCluster): |
|
def __init__(self, **kwargs): |
|
layers = [4, 4, 12, 4] |
|
norm_layer=GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w=[5, 5, 5, 5] |
|
proposal_h=[5, 5, 5, 5] |
|
fold_w=[8,4,2,1] |
|
fold_h=[8,4,2,1] |
|
heads=[6,6,12,12] |
|
head_dim=[32,32,32,32] |
|
down_patch_size=3 |
|
down_pad = 1 |
|
super().__init__( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size = down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
fork_feat=True, |
|
**kwargs) |
|
|
|
|
|
@seg_BACKBONES.register_module() |
|
@det_BACKBONES.register_module() |
|
class context_cluster_medium_feat7(ContextCluster): |
|
def __init__(self, **kwargs): |
|
layers = [4, 4, 12, 4] |
|
norm_layer=GroupNorm |
|
embed_dims = [64, 128, 320, 512] |
|
mlp_ratios = [8, 8, 4, 4] |
|
downsamples = [True, True, True, True] |
|
proposal_w=[7,7,7,7] |
|
proposal_h=[7,7,7,7] |
|
fold_w=[8,4,2,1] |
|
fold_h=[8,4,2,1] |
|
heads=[6,6,12,12] |
|
head_dim=[32,32,32,32] |
|
down_patch_size=3 |
|
down_pad = 1 |
|
super().__init__( |
|
layers, embed_dims=embed_dims, norm_layer=norm_layer, |
|
mlp_ratios=mlp_ratios, downsamples=downsamples, |
|
down_patch_size = down_patch_size, down_pad=down_pad, |
|
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h, |
|
heads=heads, head_dim=head_dim, |
|
fork_feat=True, |
|
**kwargs) |
|
|
|
|
|
if __name__ == '__main__': |
|
input = torch.rand(2, 3, 224, 224) |
|
model = coc_base_dim64() |
|
out = model(input) |
|
print(model) |
|
print(out.shape) |
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
print("number of params: {:.2f}M".format(n_parameters/1024**2)) |
|
|