COC-VIZ / models /context_cluster.py
CurHarsh's picture
Update models/context_cluster.py
7afad71
"""
ContextCluster implementation
# --------------------------------------------------------
# Context Cluster -- Image as Set of Points, ICLR'23 Oral
# Licensed under The MIT License [see LICENSE for details]
# Written by Xu Ma ([email protected])
# --------------------------------------------------------
"""
import os
import copy
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from timm.layers.helpers import to_2tuple
from einops import rearrange
import torch.nn.functional as F
try:
from mmseg.models.builder import BACKBONES as seg_BACKBONES
from mmseg.utils import get_root_logger
from mmcv.runner import _load_checkpoint
has_mmseg = True
except ImportError:
print("If for semantic segmentation, please install mmsegmentation first")
has_mmseg = False
try:
from mmdet.models.builder import BACKBONES as det_BACKBONES
from mmdet.utils import get_root_logger
from mmcv.runner import _load_checkpoint
has_mmdet = True
except ImportError:
print("If for detection, please install mmdetection first")
has_mmdet = False
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224),
'crop_pct': .95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'classifier': 'head',
**kwargs
}
default_cfgs = {
'model_small': _cfg(crop_pct=0.9),
'model_medium': _cfg(crop_pct=0.95),
}
class PointRecuder(nn.Module):
"""
Point Reducer is implemented by a layer of conv since it is mathmatically equal.
Input: tensor in shape [B, in_chans, H, W]
Output: tensor in shape [B, embed_dim, H/stride, W/stride]
"""
def __init__(self, patch_size=16, stride=16, padding=0,
in_chans=3, embed_dim=768, norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size,
stride=stride, padding=padding)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = self.norm(x)
return x
class GroupNorm(nn.GroupNorm):
"""
Group Normalization with 1 group.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, **kwargs):
super().__init__(1, num_channels, **kwargs)
def pairwise_cos_sim(x1: torch.Tensor, x2: torch.Tensor):
"""
return pair-wise similarity matrix between two tensors
:param x1: [B,...,M,D]
:param x2: [B,...,N,D]
:return: similarity matrix [B,...,M,N]
"""
x1 = F.normalize(x1, dim=-1)
x2 = F.normalize(x2, dim=-1)
sim = torch.matmul(x1, x2.transpose(-2, -1))
return sim
class Cluster(nn.Module):
def __init__(self, dim, out_dim, proposal_w=2, proposal_h=2, fold_w=2, fold_h=2, heads=4, head_dim=24,
return_center=False):
"""
:param dim: channel nubmer
:param out_dim: channel nubmer
:param proposal_w: the sqrt(proposals) value, we can also set a different value
:param proposal_h: the sqrt(proposals) value, we can also set a different value
:param fold_w: the sqrt(number of regions) value, we can also set a different value
:param fold_h: the sqrt(number of regions) value, we can also set a different value
:param heads: heads number in context cluster
:param head_dim: dimension of each head in context cluster
:param return_center: if just return centers instead of dispatching back (deprecated).
"""
super().__init__()
self.heads = heads
self.head_dim = head_dim
self.f = nn.Conv2d(dim, heads * head_dim, kernel_size=1) # for similarity
self.proj = nn.Conv2d(heads * head_dim, out_dim, kernel_size=1) # for projecting channel number
self.v = nn.Conv2d(dim, heads * head_dim, kernel_size=1) # for value
self.sim_alpha = nn.Parameter(torch.ones(1))
self.sim_beta = nn.Parameter(torch.zeros(1))
self.centers_proposal = nn.AdaptiveAvgPool2d((proposal_w, proposal_h))
self.fold_w = fold_w
self.fold_h = fold_h
self.return_center = return_center
def forward(self, x): # [b,c,w,h]
value = self.v(x)
x = self.f(x)
x = rearrange(x, "b (e c) w h -> (b e) c w h", e=self.heads)
value = rearrange(value, "b (e c) w h -> (b e) c w h", e=self.heads)
if self.fold_w > 1 and self.fold_h > 1:
# split the big feature maps to small local regions to reduce computations.
b0, c0, w0, h0 = x.shape
assert w0 % self.fold_w == 0 and h0 % self.fold_h == 0, \
f"Ensure the feature map size ({w0}*{h0}) can be divided by fold {self.fold_w}*{self.fold_h}"
x = rearrange(x, "b c (f1 w) (f2 h) -> (b f1 f2) c w h", f1=self.fold_w,
f2=self.fold_h) # [bs*blocks,c,ks[0],ks[1]]
value = rearrange(value, "b c (f1 w) (f2 h) -> (b f1 f2) c w h", f1=self.fold_w, f2=self.fold_h)
b, c, w, h = x.shape
centers = self.centers_proposal(x) # [b,c,C_W,C_H], we set M = C_W*C_H and N = w*h
value_centers = rearrange(self.centers_proposal(value), 'b c w h -> b (w h) c') # [b,C_W,C_H,c]
b, c, ww, hh = centers.shape
sim = torch.sigmoid(
self.sim_beta +
self.sim_alpha * pairwise_cos_sim(
centers.reshape(b, c, -1).permute(0, 2, 1),
x.reshape(b, c, -1).permute(0, 2, 1)
)
) # [B,M,N]
# we use mask to sololy assign each point to one center
sim_max, sim_max_idx = sim.max(dim=1, keepdim=True)
mask = torch.zeros_like(sim) # binary #[B,M,N]
mask.scatter_(1, sim_max_idx, 1.)
sim = sim * mask
value2 = rearrange(value, 'b c w h -> b (w h) c') # [B,N,D]
# aggregate step, out shape [B,M,D]
###
# Update Comment: Mar/26/2022
# a small bug: mask.sum should be sim.sum according to Eq. (1), mask can be considered as a hard version of sim in out implementation.
# We will update all checkpoints and the bug once all models are re-trained.
###
out = ((value2.unsqueeze(dim=1) * sim.unsqueeze(dim=-1)).sum(dim=2) + value_centers) / (
mask.sum(dim=-1, keepdim=True) + 1.0) # [B,M,D]
if self.return_center:
out = rearrange(out, "b (w h) c -> b c w h", w=ww)
else:
# dispatch step, return to each point in a cluster
out = (out.unsqueeze(dim=2) * sim.unsqueeze(dim=-1)).sum(dim=1) # [B,N,D]
out = rearrange(out, "b (w h) c -> b c w h", w=w)
if self.fold_w > 1 and self.fold_h > 1:
# recover the splited regions back to big feature maps if use the region partition.
out = rearrange(out, "(b f1 f2) c w h -> b c (f1 w) (f2 h)", f1=self.fold_w, f2=self.fold_h)
out = rearrange(out, "(b e) c w h -> b (e c) w h", e=self.heads)
out = self.proj(out)
return out
class Mlp(nn.Module):
"""
Implementation of MLP with nn.Linear (would be slightly faster in both training and inference).
Input: tensor with shape [B, C, H, W]
"""
def __init__(self, in_features, hidden_features=None,
out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.fc1(x.permute(0, 2, 3, 1))
x = self.act(x)
x = self.drop(x)
x = self.fc2(x).permute(0, 3, 1, 2)
x = self.drop(x)
return x
class ClusterBlock(nn.Module):
"""
Implementation of one block.
--dim: embedding dim
--mlp_ratio: mlp expansion ratio
--act_layer: activation
--norm_layer: normalization
--drop: dropout rate
--drop path: Stochastic Depth,
refer to https://arxiv.org/abs/1603.09382
--use_layer_scale, --layer_scale_init_value: LayerScale,
refer to https://arxiv.org/abs/2103.17239
"""
def __init__(self, dim, mlp_ratio=4.,
act_layer=nn.GELU, norm_layer=GroupNorm,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5,
# for context-cluster
proposal_w=2, proposal_h=2, fold_w=2, fold_h=2, heads=4, head_dim=24, return_center=False):
super().__init__()
self.norm1 = norm_layer(dim)
# dim, out_dim, proposal_w=2,proposal_h=2, fold_w=2, fold_h=2, heads=4, head_dim=24, return_center=False
self.token_mixer = Cluster(dim=dim, out_dim=dim, proposal_w=proposal_w, proposal_h=proposal_h,
fold_w=fold_w, fold_h=fold_h, heads=heads, head_dim=head_dim, return_center=False)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop)
# The following two techniques are useful to train deep ContextClusters.
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x)))
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def basic_blocks(dim, index, layers,
mlp_ratio=4.,
act_layer=nn.GELU, norm_layer=GroupNorm,
drop_rate=.0, drop_path_rate=0.,
use_layer_scale=True, layer_scale_init_value=1e-5,
# for context-cluster
proposal_w=2, proposal_h=2, fold_w=2, fold_h=2, heads=4, head_dim=24, return_center=False):
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * ( block_idx + sum(layers[:index])) / (sum(layers) - 1)
blocks.append(ClusterBlock(
dim, mlp_ratio=mlp_ratio,
act_layer=act_layer, norm_layer=norm_layer,
drop=drop_rate, drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim, return_center=False
))
blocks = nn.Sequential(*blocks)
return blocks
class ContextCluster(nn.Module):
"""
ContextCluster, the main class of our model
--layers: [x,x,x,x], number of blocks for the 4 stages
--embed_dims, --mlp_ratios, the embedding dims, mlp ratios
--downsamples: flags to apply downsampling or not
--norm_layer, --act_layer: define the types of normalization and activation
--num_classes: number of classes for the image classification
--in_patch_size, --in_stride, --in_pad: specify the patch embedding
for the input image
--down_patch_size --down_stride --down_pad:
specify the downsample (patch embed.)
--fork_feat: whether output features of the 4 stages, for dense prediction
--init_cfg, --pretrained:
for mmdetection and mmsegmentation to load pretrained weights
"""
def __init__(self, layers, embed_dims=None,
mlp_ratios=None, downsamples=None,
norm_layer=nn.BatchNorm2d, act_layer=nn.GELU,
num_classes=1000,
in_patch_size=4, in_stride=4, in_pad=0,
down_patch_size=2, down_stride=2, down_pad=0,
drop_rate=0., drop_path_rate=0.,
use_layer_scale=True, layer_scale_init_value=1e-5,
fork_feat=False,
init_cfg=None,
pretrained=None,
# the parameters for context-cluster
proposal_w=[2, 2, 2, 2], proposal_h=[2, 2, 2, 2], fold_w=[8, 4, 2, 1], fold_h=[8, 4, 2, 1],
heads=[2, 4, 6, 8], head_dim=[16, 16, 32, 32],
**kwargs):
super().__init__()
if not fork_feat:
self.num_classes = num_classes
self.fork_feat = fork_feat
self.patch_embed = PointRecuder(
patch_size=in_patch_size, stride=in_stride, padding=in_pad,
in_chans=5, embed_dim=embed_dims[0])
# set the main block in network
network = []
for i in range(len(layers)):
stage = basic_blocks(embed_dims[i], i, layers,
mlp_ratio=mlp_ratios[i],
act_layer=act_layer, norm_layer=norm_layer,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
proposal_w=proposal_w[i], proposal_h=proposal_h[i],
fold_w=fold_w[i], fold_h=fold_h[i], heads=heads[i], head_dim=head_dim[i],
return_center=False
)
network.append(stage)
if i >= len(layers) - 1:
break
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
# downsampling between two stages
network.append(
PointRecuder(
patch_size=down_patch_size, stride=down_stride,
padding=down_pad,
in_chans=embed_dims[i], embed_dim=embed_dims[i + 1]
)
)
self.network = nn.ModuleList(network)
if self.fork_feat:
# add a norm layer for each output
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
if i_emb == 0 and os.environ.get('FORK_LAST3', None):
# TODO: more elegant way
"""For RetinaNet, `start_level=1`. The first norm layer will not used.
cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
"""
layer = nn.Identity()
else:
layer = norm_layer(embed_dims[i_emb])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
else:
# Classifier head
self.norm = norm_layer(embed_dims[-1])
self.head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 \
else nn.Identity()
self.apply(self.cls_init_weights)
self.init_cfg = copy.deepcopy(init_cfg)
# load pre-trained model
if self.fork_feat and (
self.init_cfg is not None or pretrained is not None):
self.init_weights()
# init for classification
def cls_init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
# init for mmdetection or mmsegmentation by loading
# imagenet pre-trained weights
def init_weights(self, pretrained=None):
logger = get_root_logger()
if self.init_cfg is None and pretrained is None:
logger.warn(f'No pre-trained weights for '
f'{self.__class__.__name__}, '
f'training start from scratch')
pass
else:
assert 'checkpoint' in self.init_cfg, f'Only support ' \
f'specify `Pretrained` in ' \
f'`init_cfg` in ' \
f'{self.__class__.__name__} '
if self.init_cfg is not None:
ckpt_path = self.init_cfg['checkpoint']
elif pretrained is not None:
ckpt_path = pretrained
ckpt = _load_checkpoint(
ckpt_path, logger=logger, map_location='cpu')
if 'state_dict' in ckpt:
_state_dict = ckpt['state_dict']
elif 'model' in ckpt:
_state_dict = ckpt['model']
else:
_state_dict = ckpt
state_dict = _state_dict
missing_keys, unexpected_keys = \
self.load_state_dict(state_dict, False)
# show for debug
# print('missing_keys: ', missing_keys)
# print('unexpected_keys: ', unexpected_keys)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes):
self.num_classes = num_classes
self.head = nn.Linear(
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_embeddings(self, x):
_, c, img_w, img_h = x.shape
# print(f"det img size is {img_w} * {img_h}")
# register positional information buffer.
range_w = torch.arange(0, img_w, step=1) / (img_w - 1.0)
range_h = torch.arange(0, img_h, step=1) / (img_h - 1.0)
fea_pos = torch.stack(torch.meshgrid(range_w, range_h, indexing='ij'), dim=-1).float()
fea_pos = fea_pos.to(x.device)
fea_pos = fea_pos - 0.5
pos = fea_pos.permute(2, 0, 1).unsqueeze(dim=0).expand(x.shape[0], -1, -1, -1)
x = self.patch_embed(torch.cat([x, pos], dim=1))
return x
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
x = block(x)
if self.fork_feat and idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
x_out = norm_layer(x)
outs.append(x_out)
if self.fork_feat:
# output the features of four stages for dense prediction
return outs
# output only the features of last layer for image classification
return x
def forward(self, x):
# input embedding
x = self.forward_embeddings(x)
# through backbone
x = self.forward_tokens(x)
if self.fork_feat:
# otuput features of four stages for dense prediction
return x
x = self.norm(x)
cls_out = self.head(x.mean([-2, -1]))
# for image classification
return cls_out
@register_model
def coc_tiny(pretrained=False, **kwargs):
layers = [3, 4, 5, 2]
norm_layer = GroupNorm
embed_dims = [32, 64, 196, 320]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w = [2, 2, 2, 2]
proposal_h = [2, 2, 2, 2]
fold_w = [8, 4, 2, 1]
fold_h = [8, 4, 2, 1]
heads = [4, 4, 8, 8]
head_dim = [24, 24, 24, 24]
down_patch_size = 3
down_pad = 1
model = ContextCluster(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size=down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
**kwargs)
model.default_cfg = default_cfgs['model_small']
return model
@register_model
def coc_tiny2(pretrained=False, **kwargs):
layers = [3, 4, 5, 2]
norm_layer = GroupNorm
embed_dims = [32, 64, 196, 320]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w = [4, 2, 7, 4]
proposal_h = [4, 2, 7, 4]
fold_w = [7, 7, 1, 1]
fold_h = [7, 7, 1, 1]
heads = [4, 4, 8, 8]
head_dim = [24, 24, 24, 24]
down_patch_size = 3
down_pad = 1
model = ContextCluster(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size=down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
**kwargs)
model.default_cfg = default_cfgs['model_small']
return model
@register_model
def coc_small(pretrained=False, **kwargs):
layers = [2, 2, 6, 2]
norm_layer = GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w = [2, 2, 2, 2]
proposal_h = [2, 2, 2, 2]
fold_w = [8, 4, 2, 1]
fold_h = [8, 4, 2, 1]
heads = [4, 4, 8, 8]
head_dim = [32, 32, 32, 32]
down_patch_size = 3
down_pad = 1
model = ContextCluster(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size=down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
**kwargs)
model.default_cfg = default_cfgs['model_small']
return model
@register_model
def coc_medium(pretrained=False, **kwargs):
layers = [4, 4, 12, 4]
norm_layer = GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w = [2, 2, 2, 2]
proposal_h = [2, 2, 2, 2]
fold_w = [8, 4, 2, 1]
fold_h = [8, 4, 2, 1]
heads = [6, 6, 12, 12]
head_dim = [32, 32, 32, 32]
down_patch_size = 3
down_pad = 1
model = ContextCluster(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size=down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
**kwargs)
model.default_cfg = default_cfgs['model_small']
return model
@register_model
def coc_base_dim64(pretrained=False, **kwargs):
layers = [6, 6, 24, 6]
norm_layer = GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w = [2, 2, 2, 2]
proposal_h = [2, 2, 2, 2]
fold_w = [8, 4, 2, 1]
fold_h = [8, 4, 2, 1]
heads = [8, 8, 16, 16]
head_dim = [32, 32, 32, 32]
down_patch_size = 3
down_pad = 1
model = ContextCluster(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size=down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
**kwargs)
model.default_cfg = default_cfgs['model_small']
return model
@register_model
def coc_base_dim96(pretrained=False, **kwargs):
layers = [4, 4, 12, 4]
norm_layer = GroupNorm
embed_dims = [96, 192, 384, 768]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w = [2, 2, 2, 2]
proposal_h = [2, 2, 2, 2]
fold_w = [8, 4, 2, 1]
fold_h = [8, 4, 2, 1]
heads = [8, 8, 16, 16]
head_dim = [32, 32, 32, 32]
down_patch_size = 3
down_pad = 1
model = ContextCluster(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size=down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
**kwargs)
model.default_cfg = default_cfgs['model_small']
return model
"""
Updated: add plain models (without region partition) for tiny, small, and base , etc.
Re-trained with new implementation (PWconv->MLP for faster training and inference), achieve slightly better performance.
"""
@register_model
def coc_tiny_plain(pretrained=False, **kwargs):
# sharing same parameters as coc_tiny, without region partition.
layers = [3, 4, 5, 2]
norm_layer = GroupNorm
embed_dims = [32, 64, 196, 320]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w = [4, 4, 2, 2]
proposal_h = [4, 4, 2, 2]
fold_w = [1, 1, 1, 1]
fold_h = [1, 1, 1, 1]
heads = [4, 4, 8, 8]
head_dim = [24, 24, 24, 24]
down_patch_size = 3
down_pad = 1
model = ContextCluster(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size=down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
**kwargs)
model.default_cfg = default_cfgs['model_small']
return model
if has_mmdet:
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class context_cluster_small_feat2(ContextCluster):
def __init__(self, **kwargs):
layers = [2, 2, 6, 2]
norm_layer=GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w=[2,2,2,2]
proposal_h=[2,2,2,2]
fold_w=[8,4,2,1]
fold_h=[8,4,2,1]
heads=[4,4,8,8]
head_dim=[32,32,32,32]
down_patch_size=3
down_pad = 1
super().__init__(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size = down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
fork_feat=True,
**kwargs)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class context_cluster_small_feat5(ContextCluster):
def __init__(self, **kwargs):
layers = [2, 2, 6, 2]
norm_layer=GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w=[5,5,5,5]
proposal_h=[5,5,5,5]
fold_w=[8,4,2,1]
fold_h=[8,4,2,1]
heads=[4,4,8,8]
head_dim=[32,32,32,32]
down_patch_size=3
down_pad = 1
super().__init__(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size = down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
fork_feat=True,
**kwargs)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class context_cluster_small_feat7(ContextCluster):
def __init__(self, **kwargs):
layers = [2, 2, 6, 2]
norm_layer=GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w=[7,7,7,7]
proposal_h=[7,7,7,7]
fold_w=[8,4,2,1]
fold_h=[8,4,2,1]
heads=[4,4,8,8]
head_dim=[32,32,32,32]
down_patch_size=3
down_pad = 1
super().__init__(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size = down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
fork_feat=True,
**kwargs)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class context_cluster_medium_feat2(ContextCluster):
def __init__(self, **kwargs):
layers = [4, 4, 12, 4]
norm_layer=GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w=[2,2,2,2]
proposal_h=[2,2,2,2]
fold_w=[8,4,2,1]
fold_h=[8,4,2,1]
heads=[6,6,12,12]
head_dim=[32,32,32,32]
down_patch_size=3
down_pad = 1
super().__init__(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size = down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
fork_feat=True,
**kwargs)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class context_cluster_medium_feat5(ContextCluster):
def __init__(self, **kwargs):
layers = [4, 4, 12, 4]
norm_layer=GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w=[5, 5, 5, 5]
proposal_h=[5, 5, 5, 5]
fold_w=[8,4,2,1]
fold_h=[8,4,2,1]
heads=[6,6,12,12]
head_dim=[32,32,32,32]
down_patch_size=3
down_pad = 1
super().__init__(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size = down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
fork_feat=True,
**kwargs)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class context_cluster_medium_feat7(ContextCluster):
def __init__(self, **kwargs):
layers = [4, 4, 12, 4]
norm_layer=GroupNorm
embed_dims = [64, 128, 320, 512]
mlp_ratios = [8, 8, 4, 4]
downsamples = [True, True, True, True]
proposal_w=[7,7,7,7]
proposal_h=[7,7,7,7]
fold_w=[8,4,2,1]
fold_h=[8,4,2,1]
heads=[6,6,12,12]
head_dim=[32,32,32,32]
down_patch_size=3
down_pad = 1
super().__init__(
layers, embed_dims=embed_dims, norm_layer=norm_layer,
mlp_ratios=mlp_ratios, downsamples=downsamples,
down_patch_size = down_patch_size, down_pad=down_pad,
proposal_w=proposal_w, proposal_h=proposal_h, fold_w=fold_w, fold_h=fold_h,
heads=heads, head_dim=head_dim,
fork_feat=True,
**kwargs)
if __name__ == '__main__':
input = torch.rand(2, 3, 224, 224)
model = coc_base_dim64()
out = model(input)
print(model)
print(out.shape)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of params: {:.2f}M".format(n_parameters/1024**2))