File size: 7,112 Bytes
34fbab0
 
 
 
 
4a57585
34fbab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69ba73
34fbab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9822ff6
34fbab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# --------------------------------------------------------
# This file is a modified version of https://github.com/ma-xu/Context-Cluster/blob/main/cluster_visualize.py
# It is modified in order to make it compatible with Gradio.
# --------------------------------------------------------

import models
import timm
import os
import torch
import argparse
import cv2
import numpy as np
import torch.nn.functional as F
import torchvision.transforms.functional as TransF
from torchvision import transforms
from einops import rearrange
import random
from timm.models import load_checkpoint
from torchvision.utils import draw_segmentation_masks

object_categories = []
with open("imagenet1k_id_to_label.txt", "r") as f:
    for line in f:
        _, val = line.strip().split(":")
        object_categories.append(val)


class PredictionArgs:
    def __init__(self,
                 model,
                 checkpoint,
                 image,
                 shape=224,
                 stage=0,
                 block=0,
                 head=1,
                 resize_img=False,
                 alpha=0.5):
        """
        This class contains all the arguments required for model prediction.
        
        Args:
          model: `str` denoting the name of model. ex. 'coc_tiny', 'coc_small', 'coc_medium'.
          checkpoint: `str` denoting the path of model checkpoint.
          image: `np.array` denoting the path of image.
          shape: `int` denoting the dimension of square image.
          stage: `int` denoting index of visualized stage, 0-3.
          block: `int` denoting index of visualized stage, -1 is the last block ,2,3,4,1.
          head: `int` denoting index of visualized head, 0-3 or 0-7.
          resize_img: Boolean denoting whether to resize img to feature-map size.
          alpha: `float` denoting transparency, 0-1.
        """
        self.model = model
        self.checkpoint = checkpoint
        self.image = image
        self.shape = shape
        self.stage = stage
        self.block = block
        self.head = head
        self.resize_img = resize_img
        self.alpha = alpha
        assert self.model in timm.list_models(), "Please use a timm pre-trined model, see timm.list_models()"

# Preprocessing
def _preprocess(raw_image):
    raw_image = cv2.resize(raw_image, (224,) * 2)
    image = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ]
    )(raw_image[..., ::-1].copy())
    return image, raw_image


def pairwise_cos_sim(x1: torch.Tensor, x2: torch.Tensor):
    """
    return pair-wise similarity matrix between two tensors
    :param x1: [B,M,D]
    :param x2: [B,N,D]
    :return: similarity matrix [B,M,N]
    """
    x1 = F.normalize(x1, dim=-1)
    x2 = F.normalize(x2, dim=-1)
    sim = torch.matmul(x1, x2.permute(0, 2, 1))
    return sim


# forward hook function
def get_attention_score(self, input, output):
    x = input[0]  # input tensor in a tuple
    value = self.v(x)
    x = self.f(x)
    x = rearrange(x, "b (e c) w h -> (b e) c w h", e=self.heads)
    value = rearrange(value, "b (e c) w h -> (b e) c w h", e=self.heads)
    if self.fold_w > 1 and self.fold_h > 1:
        b0, c0, w0, h0 = x.shape
        assert w0 % self.fold_w == 0 and h0 % self.fold_h == 0, \
            f"Ensure the feature map size ({w0}*{h0}) can be divided by fold {self.fold_w}*{self.fold_h}"
        x = rearrange(x, "b c (f1 w) (f2 h) -> (b f1 f2) c w h", f1=self.fold_w,
                      f2=self.fold_h)  # [bs*blocks,c,ks[0],ks[1]]
        value = rearrange(value, "b c (f1 w) (f2 h) -> (b f1 f2) c w h", f1=self.fold_w, f2=self.fold_h)
    b, c, w, h = x.shape
    centers = self.centers_proposal(x)  # [b,c,C_W,C_H], we set M = C_W*C_H and N = w*h
    value_centers = rearrange(self.centers_proposal(value), 'b c w h -> b (w h) c')  # [b,C_W,C_H,c]
    b, c, ww, hh = centers.shape
    sim = torch.sigmoid(self.sim_beta +
                        self.sim_alpha * pairwise_cos_sim(
                            centers.reshape(b, c, -1).permute(0, 2, 1),
                            x.reshape(b, c, -1).permute(0, 2,1)
                        )
                    )  # [B,M,N]
    # sololy assign each point to one center
    sim_max, sim_max_idx = sim.max(dim=1, keepdim=True)
    mask = torch.zeros_like(sim)  # binary #[B,M,N]
    mask.scatter_(1, sim_max_idx, 1.)  # binary #[B,M,N]
    # changed, for plotting mask.
    mask = mask.reshape(mask.shape[0], mask.shape[1], w, h)  # [(head*fold*fold),m, w,h]
    mask = rearrange(mask, "(h0 f1 f2) m w h -> h0 (f1 f2) m w h",
                     h0=self.heads, f1=self.fold_w, f2=self.fold_h)  # [head, (fold*fold),m, w,h]
    mask_list = []
    for i in range(self.fold_w):
        for j in range(self.fold_h):
            for k in range(mask.shape[2]):
                temp = torch.zeros(self.heads, w * self.fold_w, h * self.fold_h)
                temp[:, i * w:(i + 1) * w, j * h:(j + 1) * h] = mask[:, i * self.fold_w + j, k, :, :]
                mask_list.append(temp.unsqueeze(dim=0))  # [1, heads, w, h]

    mask2 = torch.concat(mask_list, dim=0)  # [ n, heads, w, h]
    global attention
    attention = mask2.detach()


def generate_visualization(args):
    global attention
    image, raw_image = _preprocess(args.image)
    image = image.unsqueeze(dim=0)
    model = timm.create_model(model_name=args.model, pretrained=True)
    if args.checkpoint:
        load_checkpoint(model, args.checkpoint, True)
        print(f"\n\n==> Loaded checkpoint")
    else:
        raise Exception("Checkpoint doesn't exist at specified path: {}".format(args.checkpoint))
        print(f"\n\n==> NO checkpoint is loaded")
    model.network[args.stage * 2][args.block].token_mixer.register_forward_hook(get_attention_score)
    out = model(image)
    if type(out) is tuple:
        out = out[0]
    possibility = torch.softmax(out, dim=1).max() * 100
    possibility = "{:.3f}".format(possibility)
    value, index = torch.max(out, dim=1)

    from torchvision.io import read_image
    img = torch.tensor(raw_image).permute(2, 0, 1)

    # process the attention map
    attention = attention[:, args.head, :, :]
    mask = attention.unsqueeze(dim=0)
    mask = F.interpolate(mask, (img.shape[-2], img.shape[-1]))
    mask = mask.squeeze(dim=0)
    mask = mask > 0.5
    # randomly selected some good colors.
    colors = ["brown", "green", "deepskyblue", "blue", "darkgreen", "darkcyan", "coral", "aliceblue",
              "white", "black", "beige", "red", "tomato", "yellowgreen", "violet", "mediumseagreen"]
    if mask.shape[0] == 4:
        colors = colors[0:4]
    if mask.shape[0] > 4:
        colors = colors * (mask.shape[0] // 16)
        random.seed(123)
        random.shuffle(colors)

    img_with_masks = draw_segmentation_masks(img, masks=mask, alpha=args.alpha, colors=colors)
    img_with_masks = img_with_masks.detach()
    img_with_masks = TransF.to_pil_image(img_with_masks)
    img_with_masks = np.asarray(img_with_masks)
    return img_with_masks, possibility