CultriX's picture
Update app.py
69e64f0 verified
import requests
from bs4 import BeautifulSoup
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO
import tempfile
import sys
# --------------------------------------------------------------------
# PART 1: TINY DATA + PLOTS
# --------------------------------------------------------------------
# This dataframe is your ΓÇ£tinyΓÇ¥ version of model performance data.
# Used for plotting & demonstration in the Gradio app.
data_full = [
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.43, 0.7646],
['CultriX/Qwexit-2.5-14B-2024', 'https://huggingface.co/CultriX/Qwexit-2.5-14B-2024', 0.7253, 0.8174, 0.7456, 0.6688, 0.5300, 0.7027],
['CultriX/Qwen2.5-14B-BrocaV9', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV9', 0.7432, 0.8307, 0.7467, 0.6221, 0.5000, 0.7623],
['CultriX/Qwen2.5-14B-partialmergept1', 'https://huggingface.co/CultriX/Qwen2.5-14B-partialmergept1', 0.7389, 0.8370, 0.7451, 0.6715, 0.5700, 0.7308],
['CultriX/Qwen2.5-14B-partialmergept2', 'https://huggingface.co/CultriX/Qwen2.5-14B-partialmergept2', 0.7300, 0.8428, 0.7371, 0.5944, 0.4200, 0.7581],
['CultriX/model', 'https://huggingface.co/CultriX/model', 0.7010, 0.8320, 0.7194, 0.6158, 0.4700, 0.7385],
['CultriX/Qwen2.5-14B-BrocaFinal', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaFinal', 0.6265, 0.7688, 0.7007, 0.7035, 0.5100, 0.7218],
['CultriX/Qwen2.5-14B-Hyperionv1', 'https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv1', 0.7300, 0.8477, 0.7448, 0.6063, 0.4400, 0.7651],
['CultriX/Qwen2.5-14B-Hyperionv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv3', 0.7445, 0.8414, 0.7458, 0.6371, 0.4900, 0.7543],
['sometimesanotion/Lamarck-14B-v0.6', 'https://huggingface.com/sometimesanotion/Lamarck-14B-v0.6', 0.7446, 0.8294, 0.7368, 0.6008, 0.4300, 0.7423],
['CultriX/Qwen2.5-14B-Hyper', 'https://huggingface.com/CultriX/Qwen2.5-14B-Hyper', 0.7372, 0.8411, 0.7424, 0.5830, 0.4400, 0.7792],
['CultriX/Qwen2.5-14B-Hyperionv4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv4', 0.7305, 0.8359, 0.7454, 0.5827, 0.4600, 0.7797],
['CultriX/Qwen2.5-14B-Hyperionv5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv5', 0.7458, 0.8290, 0.7508, 0.6228, 0.5200, 0.7540],
['CultriX/Qwen2.5-14B-Hyperionv6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv6', 0.7430, 0.8308, 0.7353, 0.6184, 0.4500, 0.7665],
['CultriX/Qwen2.5-14B-Hyperionv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv7', 0.7412, 0.8287, 0.7508, 0.6208, 0.4800, 0.7532],
['CultriX/Qwen2.5-14B-Ultima', 'https://huggingface.co/CultriX/Qwen2.5-14B-Ultima', 0.7413, 0.8335, 0.7487, 0.6156, 0.4500, 0.7601],
['sometimesanotion/Lamarck-14B-v0.7-rc4', 'https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7-rc4', 0.7541, 0.8310, 0.7487, 0.6043, 0.4400, 0.7421],
['CultriX/Enhanced-TIES-Base-v1', 'https://huggingface.co/CultriX/Enhanced-TIES-Base-v1', 0.7497, 0.8376, 0.7424, 0.6168, 0.4700, 0.7544],
['CultriX/Qwen2.5-14B-Qwentangledv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Qwentangledv2', 0.7355, 0.8218, 0.7438, 0.6093, 0.4500, 0.7352],
['CultriX/Qwen2.5-14B-Optimav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Optimav3', 0.7482, 0.8216, 0.7424, 0.6186, 0.4800, 0.7675],
['CultriX/Qwen2.5-14B-Ultimav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Ultimav2', 0.7568, 0.8333, 0.7454, 0.6277, 0.4900, 0.7870],
['CultriX/Qwen2.5-14B-HyperSeek', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperSeek', 0.7445, 0.8414, 0.7458, 0.6371, 0.4900, 0.7543],
['CultriX/Qwen2.5-14B-HyperSeekv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperSeekv2', 0.7445, 0.8431, 0.7458, 0.6344, 0.5000, 0.7501],
['CultriX/Qwen2.5-14B-Hyperseek-h', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperSeek-h', 0.7445, 0.8414, 0.7458, 0.6371, 0.4900, 0.7543],
['CultriX/Qwen2.5-14B-HyperSeek', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperSeek', 0.7396, 0.8289, 0.7532, 0.6516, 0.4900, 0.7458],
['CultriX/Qwen2.5-DeepHyper', 'https://huggingface.co/CultriX/Qwen2.5-DeepHyper', 0.7558, 0.8283, 0.7330, 0.6962, 0.5900, 0.7191],
['CultriX/Qwen2.5-DeepHyper', 'https://huggingface.co/CultriX/Qwen2.5-DeepHyper', 0.7396, 0.8289, 0.7532, 0.6564, 0.5100, 0.7524],
['CultriX/MergeStage1', 'https://huggingface.co/CultriX/MergeStage1', 0.7559, 0.8291, 0.7519, 0.6256, 0.4800, 0.7383],
['CultriX/MergeStage3', 'https://huggingface.co/CultriX/MergeStage3', 0.7355, 0.8258, 0.7408, 0.6179, 0.4800, 0.7626],
['CultriX/MergeStage2', 'https://huggingface.co/CultriX/MergeStage2', 0.7468, 0.8242, 0.7497, 0.6156, 0.4900, 0.7424],
['CultriX/MergeStage3v2', 'https://huggingface.co/CultriX/MergeStage3v2', 0.7492, 0.8216, 0.7408, 0.6167, 0.4600, 0.7642],
['CultriX/MergeStag1v2', 'https://huggingface.co/CultriX/MergeStage1v2', 0.7430, 0.8121, 0.7424, 0.6042, 0.4400, 0.7701],
['CultriX/MergeStag2v2', 'https://huggingface.co/CultriX/MergeStage2v2', 0.7430, 0.8289, 0.7368, 0.6011, 0.4500, 0.7421],
['CultriX/MergeStag1v3', 'https://huggingface.co/CultriX/MergeStage1v3', 0.7216, 0.8458, 0.7281, 0.7202, 0.5500, 0.7362],
['CultriX/MergeStag2v3', 'https://huggingface.co/CultriX/MergeStage2v3', 0.7430, 0.8343, 0.7330, 0.6989, 0.5800, 0.7133],
['CultriX/MergeStag3v3', 'https://huggingface.co/CultriX/MergeStage3v3', 0.7430, 0.8097, 0.7467, 0.6162, 0.4600, 0.7833],
['CultriX/MergeStag3v4', 'https://huggingface.co/CultriX/MergeStage3v4', 0.7481, 0.8262, 0.7298, 0.6726, 0.5400, 0.7192],
['CultriX/MergeStag3v4v2', 'https://huggingface.co/CultriX/MergeStage3v4v2', 0.7353, 0.8258, 0.7337, 0.6669, 0.5200, 0.7329],
['CultriX/MergeStag4v2', 'https://huggingface.co/CultriX/MergeStage4v2', 0.7357, 0.8058, 0.7486, 0.6002, 0.4400, 0.7694],
['CultriX/MergeStag4v3', 'https://huggingface.co/CultriX/MergeStage4v3', 0.7413, 0.8314, 0.7457, 0.6529, 0.4800, 0.7456],
['deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', 'https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B', 0.6355, 0.8191, 0.6956, 0.5615, 0.3800, 0.7030],
['suayptalha/Lamarckvergence-14B', 'https://huggingface.co/suayptalha/Lamarckvergence-14B', 0.7554, 0.8468, 0.7457, 0.6044, 0.4300, 0.7687],
['CultriX/Qwen2.5-14B-HyperMarck', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperMarck', 0.7457, 0.8225, 0.7337, 0.6473, 0.4900, 0.7192],
['CultriX/Qwen2.5-14B-HyperMarck-dl', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperMarck-dl', 0.7354, 0.8458, 0.7248, 0.7023, 0.5600, 0.7181],
['CultriX/Qwen2.5-14B-HyperMarck-dt', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperMarck-dt', 0.7300, 0.8405, 0.7248, 0.7017, 0.5600, 0.7226],
['CultriX/Qwen2.5-14B-HyperMarck', 'https://huggingface.co/CultriX/Qwen2.5-14B-HyperMarck', 0.7568, 0.8257, 0.7368, 0.6242, 0.4600, 0.7639],
['CultriX/Qwen2.5-14B-DeepSearchv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-DeepSearchv2', 0.7000, 0.8340, 0.7218, 0.6329, 0.4800, 0.7646],
['CultriX/Qwen2.5-14B-CoreGeneralist', 'https://huggingface.co/CultriX/Qwen2.5-14B-CoreGeneralist', 0.7396, 0.8289, 0.7487, 0.6337, 0.4700, 0.7453],
['CultriX/Qwen2.5-14B-ReasoningMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-ReasoningMerge', 0.7452, 0.8364, 0.7216, 0.5982, 0.4500, 0.7705],
['CultriX/Qwen2.5-14B-GeneralReasoning', 'https://huggingface.co/CultriX/Qwen2.5-14B-GeneralReasoning', 0.7478, 0.8323, 0.7314, 0.6151, 0.4500, 0.7706],
['CultriX/Qwen2.5-14B-DeepResearch', 'https://huggingface.co/CultriX/Qwen2.5-14B-DeepResearch', 0.7568, 0.8207, 0.7435, 0.6184, 0.4800, 0.7369],
['CultriX/Qwen2.5-14B-ModelStock', 'https://huggingface.co/CultriX/Qwen2.5-14B-ModelStock', 0.7456, 0.8274, 0.7471, 0.6278, 0.4800, 0.7453],
['CultriX/Qwen2.5-14B-Qwenvergence', 'https://huggingface.co/CultriX/Qwen2.5-14B-Qwenvergence', 0.7458, 0.8405, 0.7247, 0.5920, 0.4500, 0.7544],
['CultriX/Qwen2.5-14B-Verged', 'https://huggingface.co/CultriX/Qwen2.5-14B-Verged', 0.7317, 0.8365, 0.7229, 0.6052, 0.4600, 0.7706]
]
columns = [
"Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"
]
df_full = pd.DataFrame(data_full, columns=columns)
df_full = pd.DataFrame(data_full, columns=columns)
def plot_average_scores():
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
plt.figure(figsize=(14, 10))
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
plt.title("Average Performance of Models Across Tasks", fontsize=16)
plt.xlabel("Average Score", fontsize=14)
plt.ylabel("Model Configuration", fontsize=14)
plt.gca().invert_yaxis()
plt.grid(axis='x', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_performance():
df_full_melted = df_full.melt(
id_vars=["Model Configuration", "Model Link"],
var_name="Task", value_name="Score"
)
plt.figure(figsize=(16, 12))
for model in df_full["Model Configuration"]:
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
plt.title("Performance of All Models Across Tasks", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.xticks(rotation=45)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_specific_top_models():
top_models = df_full.iloc[:, 2:].idxmax()
top_scores = df_full.iloc[:, 2:].max()
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
plt.figure(figsize=(14, 8))
plt.bar(results["Task"], results["Score"])
plt.title("Task-Specific Top Models", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_heatmap():
# Add a column for the total scores across all tasks
df_full["Total Scores"] = df_full.iloc[:, 2:].sum(axis=1)
# Normalize each column individually for consistent coloring
normalized_data = df_full.iloc[:, 2:].apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
plt.figure(figsize=(14, 10))
sns.heatmap(
normalized_data,
annot=df_full.iloc[:, 2:], # Show actual values in annotations
cmap="YlGnBu",
xticklabels=list(columns[2:]) + ["Total Scores"],
yticklabels=df_full["Model Configuration"]
)
plt.title("Performance Heatmap", fontsize=16)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def scrape_mergekit_config(model_name):
"""
For the *tiny* tableΓÇÖs model links.
Scrapes <pre> tags on the huggingface model page to find a YAML config.
"""
df_row = df_full.loc[df_full["Model Configuration"] == model_name]
if df_row.empty:
return f"No data found for model {model_name}."
model_link = df_row["Model Link"].values[0]
response = requests.get(model_link)
if response.status_code != 200:
return f"Failed to fetch model page for {model_name}. Please check the link."
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
if yaml_config:
return yaml_config.text.strip()
return f"No YAML configuration found for {model_name}."
def download_yaml(yaml_content, model_name):
"""
Let users download the scraped YAML if it exists.
"""
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
return None
filename = f"{model_name.replace('/', '_')}_config.yaml"
return gr.File(value=yaml_content.encode(), filename=filename)
def scrape_model_page(model_url):
"""
Used for the "Live Scraping" text box in the Gradio UI.
"""
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
except Exception as e:
return f"Error: {str(e)}"
def display_scraped_model_data(model_url):
"""
Helper for the "Live Scraping Features" section of the Gradio app.
"""
return scrape_model_page(model_url)
def download_all_data():
"""
Builds and returns a zip of:
- the CSV of your 'tiny' data,
- four plots (average performance, task performance, top models, heatmap),
- any YAML configurations for the 'tiny' table's models (if found).
"""
import io
csv_buffer = io.StringIO()
df_full.to_csv(csv_buffer, index=False)
csv_data = csv_buffer.getvalue().encode('utf-8')
average_plot_pil, average_plot_name = plot_average_scores()
task_plot_pil, task_plot_name = plot_task_performance()
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
plot_dict = {
"average_performance": (average_plot_pil, average_plot_name),
"task_performance": (task_plot_pil, task_plot_name),
"top_models": (top_models_plot_pil, top_models_plot_name),
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
}
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zf:
zf.writestr("model_scores.csv", csv_data)
# Add the images
for name, (pil_image, filename) in plot_dict.items():
image_bytes = io.BytesIO()
pil_image.save(image_bytes, format='PNG')
image_bytes.seek(0)
zf.writestr(filename, image_bytes.read())
# Also try scraping each model in the *tiny* dataset for a YAML config
for model_name in df_full["Model Configuration"].to_list():
yaml_content = scrape_mergekit_config(model_name)
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
zip_buffer.seek(0)
return zip_buffer, "analysis_data.zip"
# --------------------------------------------------------------------
# PART 2: THE "DATA START" SNIPPET (RANKS 44ΓÇô105) + Parser
# --------------------------------------------------------------------
# This is your larger dataset, rank = 44..105
benchmark_data = [
[
{
"rank": 1,
"name": "wanlige/li-14b-v0.4",
"scores": {
"average": 43.66,
"IFEval": 81.33,
"BBH": 50.38,
"MATH": 55.74,
"GPQA": 11.86,
"MUSR": 16.35,
"MMLU_PRO": 46.3,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/wanlige/li-14b-v0.4",
"known_config": "null"
},
{
"rank": 2,
"name": "suayptalha/Lamarckvergence-14B",
"scores": {
"average": 43.32,
"IFEval": 76.56,
"BBH": 50.33,
"MATH": 54,
"GPQA": 15.1,
"MUSR": 16.34,
"MMLU_PRO": 47.59,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/suayptalha/Lamarckvergence-14B",
"known_config": "null"
},
{
"rank": 3,
"name": "wanlige/li-14b-v0.4-slerp0.1",
"scores": {
"average": 42.91,
"IFEval": 79.23,
"BBH": 50.88,
"MATH": 53.32,
"GPQA": 14.54,
"MUSR": 11.75,
"MMLU_PRO": 47.71,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/wanlige/li-14b-v0.4-slerp0.1",
"known_config": "null"
},
{
"rank": 4,
"name": "sthenno-com/miscii-14b-0218",
"scores": {
"average": 42.9,
"IFEval": 76.56,
"BBH": 50.64,
"MATH": 51.44,
"GPQA": 17.79,
"MUSR": 13.21,
"MMLU_PRO": 47.75,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno-com/miscii-14b-0218",
"known_config": "null"
},
{
"rank": 5,
"name": "sthenno/tempesthenno-ppo-ckpt40",
"scores": {
"average": 42.74,
"IFEval": 79.23,
"BBH": 50.57,
"MATH": 47.36,
"GPQA": 17,
"MUSR": 14.56,
"MMLU_PRO": 47.69,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno/tempesthenno-ppo-ckpt40",
"known_config": "null"
},
{
"rank": 6,
"name": "tanliboy/lambda-qwen2.5-14b-dpo-test",
"scores": {
"average": 42.62,
"IFEval": 82.31,
"BBH": 48.45,
"MATH": 54.61,
"GPQA": 14.99,
"MUSR": 12.59,
"MMLU_PRO": 42.75,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/tanliboy/lambda-qwen2.5-14b-dpo-test",
"known_config": "null"
},
{
"rank": 7,
"name": "sthenno/tempesthenno-nuslerp-001",
"scores": {
"average": 42.59,
"IFEval": 79.26,
"BBH": 51.04,
"MATH": 47.58,
"GPQA": 16.44,
"MUSR": 13.88,
"MMLU_PRO": 47.3,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno/tempesthenno-nuslerp-001",
"known_config": "null"
},
{
"rank": 8,
"name": "YOYO-AI/Qwen2.5-14B-1M-YOYO-V3",
"scores": {
"average": 42.56,
"IFEval": 83.98,
"BBH": 49.47,
"MATH": 53.55,
"GPQA": 10.51,
"MUSR": 11.1,
"MMLU_PRO": 46.74,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/YOYO-AI/Qwen2.5-14B-1M-YOYO-V3",
"known_config": "null"
},
{
"rank": 9,
"name": "Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4",
"scores": {
"average": 42.55,
"IFEval": 82.92,
"BBH": 48.05,
"MATH": 54.23,
"GPQA": 12.3,
"MUSR": 13.15,
"MMLU_PRO": 44.65,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4",
"known_config": "null"
},
{
"rank": 10,
"name": "djuna/Q2.5-Veltha-14B",
"scores": {
"average": 42.52,
"IFEval": 82.92,
"BBH": 49.75,
"MATH": 47.89,
"GPQA": 14.54,
"MUSR": 12.26,
"MMLU_PRO": 47.76,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/djuna/Q2.5-Veltha-14B",
"known_config": "null"
},
{
"rank": 11,
"name": "arcee-ai/Virtuoso-Small-v2",
"scores": {
"average": 42.48,
"IFEval": 82.73,
"BBH": 50.95,
"MATH": 46.6,
"GPQA": 13.76,
"MUSR": 14.28,
"MMLU_PRO": 46.53,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/arcee-ai/Virtuoso-Small-v2",
"known_config": "null"
},
{
"rank": 12,
"name": "YOYO-AI/Qwen2.5-14B-YOYO-V4-p1",
"scores": {
"average": 42.46,
"IFEval": 82.03,
"BBH": 50.25,
"MATH": 53.32,
"GPQA": 12.75,
"MUSR": 11.73,
"MMLU_PRO": 44.67,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-V4-p1",
"known_config": "null"
},
{
"rank": 13,
"name": "jpacifico/Chocolatine-14B-Instruct-DPO-v1.3",
"scores": {
"average": 42.42,
"IFEval": 70.4,
"BBH": 54.85,
"MATH": 56.19,
"GPQA": 12.19,
"MUSR": 12.29,
"MMLU_PRO": 48.6,
"Architecture": "Phi3ForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/jpacifico/Chocolatine-14B-Instruct-DPO-v1.3",
"known_config": "null"
},
{
"rank": 14,
"name": "sthenno-com/miscii-14b-1028",
"scores": {
"average": 42.38,
"IFEval": 82.37,
"BBH": 49.26,
"MATH": 50.3,
"GPQA": 14.21,
"MUSR": 12,
"MMLU_PRO": 46.14,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno-com/miscii-14b-1028",
"known_config": "null"
},
{
"rank": 15,
"name": "sthenno-com/miscii-14b-1225",
"scores": {
"average": 42.35,
"IFEval": 78.78,
"BBH": 50.91,
"MATH": 45.17,
"GPQA": 17,
"MUSR": 14.77,
"MMLU_PRO": 47.46,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno-com/miscii-14b-1225",
"known_config": "null"
},
{
"rank": 16,
"name": "prithivMLmods/Sombrero-Opus-14B-Elite5",
"scores": {
"average": 42.32,
"IFEval": 78.81,
"BBH": 50.17,
"MATH": 53.55,
"GPQA": 11.52,
"MUSR": 13.22,
"MMLU_PRO": 46.67,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/prithivMLmods/Sombrero-Opus-14B-Elite5",
"known_config": "null"
},
{
"rank": 17,
"name": "Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v8",
"scores": {
"average": 42.26,
"IFEval": 73.84,
"BBH": 49.31,
"MATH": 41.69,
"GPQA": 18.23,
"MUSR": 21.96,
"MMLU_PRO": 48.5,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/Lunzima/NQLSG-Qwen2.5-14B-MegaFusion-v8",
"known_config": "null"
},
{
"rank": 18,
"name": "prithivMLmods/Equuleus-Opus-14B-Exp",
"scores": {
"average": 42.2,
"IFEval": 70.01,
"BBH": 48.62,
"MATH": 45.85,
"GPQA": 18.23,
"MUSR": 21.9,
"MMLU_PRO": 48.6,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/prithivMLmods/Equuleus-Opus-14B-Exp",
"known_config": "null"
},
{
"rank": 19,
"name": "rombodawg/Rombos-LLM-V2.6-Qwen-14b",
"scores": {
"average": 42.2,
"IFEval": 84.32,
"BBH": 49.28,
"MATH": 52.11,
"GPQA": 11.19,
"MUSR": 12.29,
"MMLU_PRO": 44.01,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b",
"known_config": "null"
},
{
"rank": 20,
"name": "nbeerbower/EVA-abliterated-TIES-Qwen2.5-14B",
"scores": {
"average": 42.16,
"IFEval": 78.36,
"BBH": 48.52,
"MATH": 50.45,
"GPQA": 13.98,
"MUSR": 14.88,
"MMLU_PRO": 46.79,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/nbeerbower/EVA-abliterated-TIES-Qwen2.5-14B",
"known_config": "null"
},
{
"rank": 21,
"name": "sometimesanotion/LamarckInfusion-14B-v1",
"scores": {
"average": 42.06,
"IFEval": 71.98,
"BBH": 50.35,
"MATH": 41.69,
"GPQA": 18.79,
"MUSR": 20.9,
"MMLU_PRO": 48.63,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/LamarckInfusion-14B-v1",
"known_config": "null"
},
{
"rank": 22,
"name": "tensopolis/virtuoso-small-v2-tensopolis-v1",
"scores": {
"average": 41.99,
"IFEval": 82.4,
"BBH": 50.53,
"MATH": 46.53,
"GPQA": 12.53,
"MUSR": 13.88,
"MMLU_PRO": 46.07,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/tensopolis/virtuoso-small-v2-tensopolis-v1",
"known_config": "null"
},
{
"rank": 23,
"name": "Quazim0t0/Fugazi14b",
"scores": {
"average": 41.94,
"IFEval": 69.98,
"BBH": 56.09,
"MATH": 46.53,
"GPQA": 13.53,
"MUSR": 16.42,
"MMLU_PRO": 49.08,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Fugazi14b",
"known_config": "null"
},
{
"rank": 24,
"name": "1024m/QWEN-14B-B100",
"scores": {
"average": 41.92,
"IFEval": 77.62,
"BBH": 49.78,
"MATH": 54.38,
"GPQA": 13.42,
"MUSR": 9.88,
"MMLU_PRO": 46.43,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/1024m/QWEN-14B-B100",
"known_config": "null"
},
{
"rank": 25,
"name": "Sakalti/Saka-14B",
"scores": {
"average": 41.91,
"IFEval": 71.74,
"BBH": 49.72,
"MATH": 40.94,
"GPQA": 19.46,
"MUSR": 20.74,
"MMLU_PRO": 48.84,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/Sakalti/Saka-14B",
"known_config": "null"
},
{
"rank": 26,
"name": "prithivMLmods/Sombrero-Opus-14B-Elite6",
"scores": {
"average": 41.88,
"IFEval": 72.26,
"BBH": 49.6,
"MATH": 40.79,
"GPQA": 19.13,
"MUSR": 20.74,
"MMLU_PRO": 48.78,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/prithivMLmods/Sombrero-Opus-14B-Elite6",
"known_config": "null"
},
{
"rank": 27,
"name": "YOYO-AI/Qwen2.5-14B-YOYO-latest-V2",
"scores": {
"average": 41.85,
"IFEval": 77.71,
"BBH": 47.3,
"MATH": 51.59,
"GPQA": 13.87,
"MUSR": 13.68,
"MMLU_PRO": 46.93,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/YOYO-AI/Qwen2.5-14B-YOYO-latest-V2",
"known_config": "null"
},
{
"rank": 28,
"name": "Tsunami-th/Tsunami-1.0-14B-Instruct",
"scores": {
"average": 41.84,
"IFEval": 78.29,
"BBH": 49.15,
"MATH": 45.85,
"GPQA": 14.21,
"MUSR": 16.34,
"MMLU_PRO": 47.21,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Tsunami-th/Tsunami-1.0-14B-Instruct",
"known_config": "null"
},
{
"rank": 29,
"name": "sthenno/tempesthenno-kto-0205-ckpt80",
"scores": {
"average": 41.79,
"IFEval": 80.54,
"BBH": 50.64,
"MATH": 45.92,
"GPQA": 13.09,
"MUSR": 12.93,
"MMLU_PRO": 47.62,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sthenno/tempesthenno-kto-0205-ckpt80",
"known_config": "null"
},
{
"rank": 30,
"name": "sometimesanotion/Lamarck-14B-v0.7-rc4",
"scores": {
"average": 41.79,
"IFEval": 72.11,
"BBH": 49.85,
"MATH": 40.26,
"GPQA": 18.57,
"MUSR": 21.07,
"MMLU_PRO": 48.89,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7-rc4",
"known_config": "null"
},
{
"rank": 31,
"name": "prithivMLmods/Porpoise-Opus-14B-Exp",
"scores": {
"average": 41.77,
"IFEval": 70.98,
"BBH": 49.95,
"MATH": 40.41,
"GPQA": 19.13,
"MUSR": 21.3,
"MMLU_PRO": 48.85,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/prithivMLmods/Porpoise-Opus-14B-Exp",
"known_config": "null"
},
{
"rank": 32,
"name": "CombinHorizon/Josiefied-abliteratedV4-Qwen2.5-14B-Inst-BaseMerge-TIES",
"scores": {
"average": 41.77,
"IFEval": 82.4,
"BBH": 48.2,
"MATH": 53.17,
"GPQA": 9.96,
"MUSR": 12.65,
"MMLU_PRO": 44.21,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/CombinHorizon/Josiefied-abliteratedV4-Qwen2.5-14B-Inst-BaseMerge-TIES",
"known_config": "null"
},
{
"rank": 33,
"name": "suayptalha/Lamarckvergence-14B",
"scores": {
"average": 43.32,
"IFEval": 76.56,
"BBH": 50.33,
"MATH": 54,
"GPQA": 15.1,
"MUSR": 16.34,
"MMLU_PRO": 47.59,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/suayptalha/Lamarckvergence-14B",
"known_config": "null"
},
{
"rank": 34,
"name": "sthenno/tempesthenno-ppo-ckpt40",
"scores": {
"average": 42.74,
"IFEval": 79.23,
"BBH": 50.57,
"MATH": 47.36,
"GPQA": 17,
"MUSR": 14.56,
"MMLU_PRO": 47.69,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno/tempesthenno-ppo-ckpt40",
"known_config": "null"
},
{
"rank": 35,
"name": "tanliboy/lambda-qwen2.5-14b-dpo-test",
"scores": {
"average": 42.62,
"IFEval": 82.31,
"BBH": 48.45,
"MATH": 54.61,
"GPQA": 14.99,
"MUSR": 12.59,
"MMLU_PRO": 42.75,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/tanliboy/lambda-qwen2.5-14b-dpo-test",
"known_config": "null"
},
{
"rank": 36,
"name": "sthenno/tempesthenno-nuslerp-001",
"scores": {
"average": 42.59,
"IFEval": 79.26,
"BBH": 51.04,
"MATH": 47.58,
"GPQA": 16.44,
"MUSR": 13.88,
"MMLU_PRO": 47.3,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno/tempesthenno-nuslerp-001",
"known_config": "null"
},
{
"rank": 37,
"name": "Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4",
"scores": {
"average": 42.55,
"IFEval": 82.92,
"BBH": 48.05,
"MATH": 54.23,
"GPQA": 12.3,
"MUSR": 13.15,
"MMLU_PRO": 44.65,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4",
"known_config": "null"
},
{
"rank": 38,
"name": "djuna/Q2.5-Veltha-14B",
"scores": {
"average": 42.52,
"IFEval": 82.92,
"BBH": 49.75,
"MATH": 47.89,
"GPQA": 14.54,
"MUSR": 12.26,
"MMLU_PRO": 47.76,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/djuna/Q2.5-Veltha-14B",
"known_config": "null"
},
{
"rank": 39,
"name": "arcee-ai/Virtuoso-Small-v2",
"scores": {
"average": 42.48,
"IFEval": 82.73,
"BBH": 50.95,
"MATH": 46.6,
"GPQA": 13.76,
"MUSR": 14.28,
"MMLU_PRO": 46.53,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/arcee-ai/Virtuoso-Small-v2",
"known_config": "null"
},
{
"rank": 40,
"name": "jpacifico/Chocolatine-14B-Instruct-DPO-v1.3",
"scores": {
"average": 42.42,
"IFEval": 70.4,
"BBH": 54.85,
"MATH": 56.19,
"GPQA": 12.19,
"MUSR": 12.29,
"MMLU_PRO": 48.6,
"Architecture": "Phi3ForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/jpacifico/Chocolatine-14B-Instruct-DPO-v1.3",
"known_config": "null"
},
{
"rank": 41,
"name": "sthenno-com/miscii-14b-1028",
"scores": {
"average": 42.38,
"IFEval": 82.37,
"BBH": 49.26,
"MATH": 50.3,
"GPQA": 14.21,
"MUSR": 12,
"MMLU_PRO": 46.14,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno-com/miscii-14b-1028",
"known_config": "null"
},
{
"rank": 42,
"name": "sthenno-com/miscii-14b-1225",
"scores": {
"average": 42.35,
"IFEval": 78.78,
"BBH": 50.91,
"MATH": 45.17,
"GPQA": 17,
"MUSR": 14.77,
"MMLU_PRO": 47.46,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/sthenno-com/miscii-14b-1225",
"known_config": "null"
},
{
"rank": 43,
"name": "tensopolis/virtuoso-small-v2-tensopolis-v1",
"scores": {
"average": 42.34,
"IFEval": 83.4,
"BBH": 50.99,
"MATH": 46.6,
"GPQA": 12.98,
"MUSR": 13.38,
"MMLU_PRO": 46.67,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/tensopolis/virtuoso-small-v2-tensopolis-v1",
"known_config": "null"
},
{
"rank": 44,
"name": "rombodawg/Rombos-LLM-V2.6-Qwen-14b",
"scores": {
"average": 42.2,
"IFEval": 84.32,
"BBH": 49.28,
"MATH": 52.11,
"GPQA": 11.19,
"MUSR": 12.29,
"MMLU_PRO": 44.01,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b",
"known_config": "null"
},
{
"rank": 45,
"name": "1024m/QWEN-14B-B100",
"scores": {
"average": 41.92,
"IFEval": 77.62,
"BBH": 49.78,
"MATH": 54.38,
"GPQA": 13.42,
"MUSR": 9.88,
"MMLU_PRO": 46.43,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/1024m/QWEN-14B-B100",
"known_config": "null"
},
{
"rank": 46,
"name": "Sakalti/Saka-14B",
"scores": {
"average": 41.91,
"IFEval": 71.74,
"BBH": 49.72,
"MATH": 40.94,
"GPQA": 19.46,
"MUSR": 20.74,
"MMLU_PRO": 48.84,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/Sakalti/Saka-14B",
"known_config": "null"
},
{
"rank": 47,
"name": "Tsunami-th/Tsunami-1.0-14B-Instruct",
"scores": {
"average": 41.84,
"IFEval": 78.29,
"BBH": 49.15,
"MATH": 45.85,
"GPQA": 14.21,
"MUSR": 16.34,
"MMLU_PRO": 47.21,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Tsunami-th/Tsunami-1.0-14B-Instruct",
"known_config": "null"
},
{
"rank": 48,
"name": "sthenno/tempesthenno-kto-0205-ckpt80",
"scores": {
"average": 41.79,
"IFEval": 80.54,
"BBH": 50.64,
"MATH": 45.92,
"GPQA": 13.09,
"MUSR": 12.93,
"MMLU_PRO": 47.62,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sthenno/tempesthenno-kto-0205-ckpt80",
"known_config": "null"
},
{
"rank": 49,
"name": "sometimesanotion/Lamarck-14B-v0.7-rc4",
"scores": {
"average": 41.79,
"IFEval": 72.11,
"BBH": 49.85,
"MATH": 40.26,
"GPQA": 18.57,
"MUSR": 21.07,
"MMLU_PRO": 48.89,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7-rc4",
"known_config": "null"
},
{
"rank": 50,
"name": "CombinHorizon/Josiefied-abliteratedV4-Qwen2.5-14B-Inst-BaseMerge-TIES",
"scores": {
"average": 41.77,
"IFEval": 82.4,
"BBH": 48.2,
"MATH": 53.17,
"GPQA": 9.96,
"MUSR": 12.65,
"MMLU_PRO": 44.21,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/CombinHorizon/Josiefied-abliteratedV4-Qwen2.5-14B-Inst-BaseMerge-TIES",
"known_config": "null"
},
{
"rank": 51,
"name": "suayptalha/Luminis-phi-4",
"scores": {
"average": 41.76,
"IFEval": 69,
"BBH": 55.8,
"MATH": 46.37,
"GPQA": 13.53,
"MUSR": 16.68,
"MMLU_PRO": 49.15,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/suayptalha/Luminis-phi-4",
"known_config": "null"
},
{
"rank": 52,
"name": "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
"scores": {
"average": 41.75,
"IFEval": 83.28,
"BBH": 47.41,
"MATH": 53.02,
"GPQA": 11.19,
"MUSR": 11.58,
"MMLU_PRO": 44.02,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
"known_config": "null"
},
{
"rank": 53,
"name": "djuna/Q2.5-Veltha-14B-0.5",
"scores": {
"average": 41.61,
"IFEval": 77.96,
"BBH": 50.32,
"MATH": 43.73,
"GPQA": 15.77,
"MUSR": 14.17,
"MMLU_PRO": 47.72,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5",
"known_config": "null"
},
{
"rank": 54,
"name": "Qwen/Qwen2.5-14B-Instruct-1M",
"scores": {
"average": 41.56,
"IFEval": 84.14,
"BBH": 45.66,
"MATH": 53.02,
"GPQA": 12.42,
"MUSR": 11.35,
"MMLU_PRO": 42.77,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M",
"known_config": "null"
},
{
"rank": 55,
"name": "notbdq/Qwen2.5-14B-Instruct-1M-GRPO-Reasoning",
"scores": {
"average": 41.56,
"IFEval": 84.14,
"BBH": 45.66,
"MATH": 53.02,
"GPQA": 12.42,
"MUSR": 11.35,
"MMLU_PRO": 42.77,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/notbdq/Qwen2.5-14B-Instruct-1M-GRPO-Reasoning",
"known_config": "null"
},
{
"rank": 56,
"name": "sometimesanotion/Qwenvergence-14B-v11",
"scores": {
"average": 41.52,
"IFEval": 71.92,
"BBH": 47.55,
"MATH": 46.45,
"GPQA": 16.33,
"MUSR": 18.76,
"MMLU_PRO": 48.08,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Qwenvergence-14B-v11",
"known_config": "null"
},
{
"rank": 57,
"name": "sometimesanotion/Qwenvergence-14B-v10",
"scores": {
"average": 41.48,
"IFEval": 67.57,
"BBH": 46.75,
"MATH": 47.89,
"GPQA": 17.23,
"MUSR": 22.33,
"MMLU_PRO": 47.1,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Qwenvergence-14B-v10",
"known_config": "null"
},
{
"rank": 58,
"name": "CombinHorizon/huihui-ai-abliteratedV2-Qwen2.5-14B-Inst-BaseMerge-TIES",
"scores": {
"average": 41.47,
"IFEval": 81.76,
"BBH": 47.77,
"MATH": 54.76,
"GPQA": 8.61,
"MUSR": 12.45,
"MMLU_PRO": 43.45,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/CombinHorizon/huihui-ai-abliteratedV2-Qwen2.5-14B-Inst-BaseMerge-TIES",
"known_config": "null"
},
{
"rank": 59,
"name": "RDson/WomboCombo-R1-Coder-14B-Preview",
"scores": {
"average": 41.46,
"IFEval": 62.86,
"BBH": 48.15,
"MATH": 59.89,
"GPQA": 9.51,
"MUSR": 22.01,
"MMLU_PRO": 46.31,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/RDson/WomboCombo-R1-Coder-14B-Preview",
"known_config": "null"
},
{
"rank": 60,
"name": "jpacifico/Chocolatine-2-14B-Instruct-v2.0b3",
"scores": {
"average": 41.43,
"IFEval": 73.23,
"BBH": 49.57,
"MATH": 41.09,
"GPQA": 17.23,
"MUSR": 19.3,
"MMLU_PRO": 48.19,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/jpacifico/Chocolatine-2-14B-Instruct-v2.0b3",
"known_config": "null"
},
{
"rank": 61,
"name": "Quazim0t0/Nova-14b-sce",
"scores": {
"average": 41.41,
"IFEval": 70.22,
"BBH": 56.03,
"MATH": 41.62,
"GPQA": 15.1,
"MUSR": 16.43,
"MMLU_PRO": 49.03,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Nova-14b-sce",
"known_config": "null"
},
{
"rank": 62,
"name": "v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno",
"scores": {
"average": 41.36,
"IFEval": 81.97,
"BBH": 48.45,
"MATH": 53.25,
"GPQA": 10.85,
"MUSR": 10.05,
"MMLU_PRO": 43.59,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno",
"known_config": "null"
},
{
"rank": 63,
"name": "Quazim0t0/NovaScotia-14b-stock",
"scores": {
"average": 41.35,
"IFEval": 67.87,
"BBH": 56.03,
"MATH": 46.3,
"GPQA": 13.2,
"MUSR": 15.7,
"MMLU_PRO": 48.99,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/NovaScotia-14b-stock",
"known_config": "null"
},
{
"rank": 64,
"name": "Quazim0t0/ODB-14b-sce",
"scores": {
"average": 41.34,
"IFEval": 70.16,
"BBH": 56.19,
"MATH": 41.16,
"GPQA": 14.99,
"MUSR": 16.5,
"MMLU_PRO": 49.02,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/ODB-14b-sce",
"known_config": "null"
},
{
"rank": 65,
"name": "LightningRodLabs/Flashlight-v1.1",
"scores": {
"average": 40.99,
"IFEval": 67.21,
"BBH": 55.43,
"MATH": 53.25,
"GPQA": 11.97,
"MUSR": 9,
"MMLU_PRO": 49.06,
"Architecture": "Phi3ForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/LightningRodLabs/Flashlight-v1.1",
"known_config": "null"
},
{
"rank": 66,
"name": "Quazim0t0/Mithril-14B-sce",
"scores": {
"average": 40.98,
"IFEval": 69.58,
"BBH": 55.93,
"MATH": 38.22,
"GPQA": 15.88,
"MUSR": 17.37,
"MMLU_PRO": 48.92,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Mithril-14B-sce",
"known_config": "null"
},
{
"rank": 67,
"name": "Sakalti/ultiima-14B-v0.2",
"scores": {
"average": 40.96,
"IFEval": 70.7,
"BBH": 49.51,
"MATH": 39.95,
"GPQA": 17.67,
"MUSR": 19.19,
"MMLU_PRO": 48.75,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/Sakalti/ultiima-14B-v0.2",
"known_config": "null"
},
{
"rank": 68,
"name": "bunnycore/Phi-4-ReasoningRP",
"scores": {
"average": 40.95,
"IFEval": 67.36,
"BBH": 55.88,
"MATH": 45.69,
"GPQA": 12.53,
"MUSR": 15.14,
"MMLU_PRO": 49.12,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/bunnycore/Phi-4-ReasoningRP",
"known_config": "null"
},
{
"rank": 69,
"name": "dwikitheduck/gen-inst-1",
"scores": {
"average": 40.88,
"IFEval": 77.5,
"BBH": 48.32,
"MATH": 45.54,
"GPQA": 16.22,
"MUSR": 12.27,
"MMLU_PRO": 45.43,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/dwikitheduck/gen-inst-1",
"known_config": "null"
},
{
"rank": 70,
"name": "v000000/Qwen2.5-14B-Gutenberg-1e-Delta",
"scores": {
"average": 40.88,
"IFEval": 80.45,
"BBH": 48.62,
"MATH": 52.64,
"GPQA": 10.51,
"MUSR": 9.38,
"MMLU_PRO": 43.67,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/v000000/Qwen2.5-14B-Gutenberg-1e-Delta",
"known_config": "null"
},
{
"rank": 60,
"name": "hotmailuser/QwenSlerp2-14B",
"scores": {
"average": 40.86,
"IFEval": 70.37,
"BBH": 49.68,
"MATH": 39.65,
"GPQA": 17.45,
"MUSR": 19.35,
"MMLU_PRO": 48.66,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/hotmailuser/QwenSlerp2-14B",
"known_config": "null"
},
{
"rank": 71,
"name": "Quazim0t0/Loke-14B-sce",
"scores": {
"average": 40.86,
"IFEval": 68.48,
"BBH": 55.83,
"MATH": 39.05,
"GPQA": 15.32,
"MUSR": 17.56,
"MMLU_PRO": 48.9,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Loke-14B-sce",
"known_config": "null"
},
{
"rank": 72,
"name": "Quazim0t0/mosaic-14b-sce",
"scores": {
"average": 40.83,
"IFEval": 68.76,
"BBH": 55.69,
"MATH": 40.26,
"GPQA": 14.99,
"MUSR": 16.44,
"MMLU_PRO": 48.85,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/mosaic-14b-sce",
"known_config": "null"
},
{
"rank": 73,
"name": "bunnycore/Phi-4-Model-Stock",
"scores": {
"average": 40.79,
"IFEval": 68.79,
"BBH": 55.32,
"MATH": 42.98,
"GPQA": 13.98,
"MUSR": 15.12,
"MMLU_PRO": 48.54,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/bunnycore/Phi-4-Model-Stock",
"known_config": "null"
},
{
"rank": 74,
"name": "unsloth/phi-4",
"scores": {
"average": 40.73,
"IFEval": 68.82,
"BBH": 55.25,
"MATH": 50,
"GPQA": 11.52,
"MUSR": 10.13,
"MMLU_PRO": 48.65,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/unsloth/phi-4",
"known_config": "null"
},
{
"rank": 75,
"name": "pankajmathur/orca_mini_phi-4",
"scores": {
"average": 40.68,
"IFEval": 77.81,
"BBH": 54.63,
"MATH": 29.53,
"GPQA": 16.55,
"MUSR": 18.25,
"MMLU_PRO": 47.28,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/pankajmathur/orca_mini_phi-4",
"known_config": "null"
},
{
"rank": 76,
"name": "pankajmathur/orca_mini_v9_2_14B",
"scores": {
"average": 40.68,
"IFEval": 77.81,
"BBH": 54.63,
"MATH": 29.53,
"GPQA": 16.55,
"MUSR": 18.25,
"MMLU_PRO": 47.28,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/pankajmathur/orca_mini_v9_2_14B",
"known_config": "null"
},
{
"rank": 77,
"name": "sometimesanotion/Lamarck-14B-v0.6-model_stock",
"scores": {
"average": 40.68,
"IFEval": 67.9,
"BBH": 46.49,
"MATH": 42.45,
"GPQA": 17.9,
"MUSR": 22.68,
"MMLU_PRO": 46.64,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Lamarck-14B-v0.6-model_stock",
"known_config": "null"
},
{
"rank": 78,
"name": "sometimesanotion/Qwenvergence-14B-v0.6-004-model_stock",
"scores": {
"average": 40.6,
"IFEval": 68.6,
"BBH": 46.37,
"MATH": 40.94,
"GPQA": 17.79,
"MUSR": 23.35,
"MMLU_PRO": 46.59,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Qwenvergence-14B-v0.6-004-model_stock",
"known_config": "null"
},
{
"rank": 79,
"name": "Quazim0t0/Oasis-14B-ties",
"scores": {
"average": 40.59,
"IFEval": 69.37,
"BBH": 55.75,
"MATH": 37.54,
"GPQA": 15.32,
"MUSR": 16.63,
"MMLU_PRO": 48.94,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Oasis-14B-ties",
"known_config": "null"
},
{
"rank": 80,
"name": "LightningRodLabs/Flashlight-v1.0",
"scores": {
"average": 40.57,
"IFEval": 67.45,
"BBH": 55.15,
"MATH": 49.7,
"GPQA": 12.3,
"MUSR": 9.93,
"MMLU_PRO": 48.91,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/LightningRodLabs/Flashlight-v1.0",
"known_config": "null"
},
{
"rank": 81,
"name": "arcee-ai/Virtuoso-Small",
"scores": {
"average": 40.54,
"IFEval": 79.35,
"BBH": 50.4,
"MATH": 40.94,
"GPQA": 11.52,
"MUSR": 14.44,
"MMLU_PRO": 46.57,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/arcee-ai/Virtuoso-Small",
"known_config": "null"
},
{
"rank": 82,
"name": "Quazim0t0/GuiltySpark-14B-ties",
"scores": {
"average": 40.52,
"IFEval": 68.54,
"BBH": 55.72,
"MATH": 38.37,
"GPQA": 15.32,
"MUSR": 16.3,
"MMLU_PRO": 48.89,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/GuiltySpark-14B-ties",
"known_config": "null"
},
{
"rank": 83,
"name": "ozone-ai/0x-lite",
"scores": {
"average": 40.48,
"IFEval": 77.4,
"BBH": 47.53,
"MATH": 50.45,
"GPQA": 9.28,
"MUSR": 11.76,
"MMLU_PRO": 46.49,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/ozone-ai/0x-lite",
"known_config": "null"
},
{
"rank": 84,
"name": "Quazim0t0/Casa-14b-sce",
"scores": {
"average": 40.41,
"IFEval": 66.54,
"BBH": 55.4,
"MATH": 46.98,
"GPQA": 11.07,
"MUSR": 13.31,
"MMLU_PRO": 49.17,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Casa-14b-sce",
"known_config": "null"
},
{
"rank": 85,
"name": "Sakalti/ultiima-14B-v0.3",
"scores": {
"average": 40.38,
"IFEval": 70.4,
"BBH": 48.45,
"MATH": 39.65,
"GPQA": 16.89,
"MUSR": 18.73,
"MMLU_PRO": 48.18,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/Sakalti/ultiima-14B-v0.3",
"known_config": "null"
},
{
"rank": 86,
"name": "ehristoforu/fp4-14b-v1-fix",
"scores": {
"average": 40.37,
"IFEval": 67.42,
"BBH": 54.33,
"MATH": 42.07,
"GPQA": 13.87,
"MUSR": 16.18,
"MMLU_PRO": 48.37,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/ehristoforu/fp4-14b-v1-fix",
"known_config": "null"
},
{
"rank": 87,
"name": "FINGU-AI/Chocolatine-Fusion-14B",
"scores": {
"average": 40.36,
"IFEval": 69.49,
"BBH": 48.6,
"MATH": 38.52,
"GPQA": 16.22,
"MUSR": 21.99,
"MMLU_PRO": 47.35,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "8.367B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/FINGU-AI/Chocolatine-Fusion-14B",
"known_config": "null"
},
{
"rank": 88,
"name": "hotmailuser/QwenSlerp-14B",
"scores": {
"average": 40.35,
"IFEval": 70.25,
"BBH": 49.42,
"MATH": 38.37,
"GPQA": 18.34,
"MUSR": 16.83,
"MMLU_PRO": 48.89,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/hotmailuser/QwenSlerp-14B",
"known_config": "null"
},
{
"rank": 89,
"name": "Triangle104/Robo-Gutenberg_V1.0",
"scores": {
"average": 40.35,
"IFEval": 60.08,
"BBH": 50.29,
"MATH": 45.62,
"GPQA": 18.12,
"MUSR": 19.2,
"MMLU_PRO": 48.79,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/Triangle104/Robo-Gutenberg_V1.0",
"known_config": "null"
},
{
"rank": 90,
"name": "Quazim0t0/Adamant-14B-sce",
"scores": {
"average": 40.32,
"IFEval": 68.58,
"BBH": 54.97,
"MATH": 39.88,
"GPQA": 13.42,
"MUSR": 16.51,
"MMLU_PRO": 48.57,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Adamant-14B-sce",
"known_config": "null"
},
{
"rank": 91,
"name": "Quazim0t0/Phi4Basis-14B-sce",
"scores": {
"average": 40.31,
"IFEval": 65.02,
"BBH": 55.67,
"MATH": 47.89,
"GPQA": 10.51,
"MUSR": 14.02,
"MMLU_PRO": 48.78,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Phi4Basis-14B-sce",
"known_config": "null"
},
{
"rank": 92,
"name": "Quazim0t0/bloom-14b-stock",
"scores": {
"average": 40.29,
"IFEval": 65.75,
"BBH": 55.27,
"MATH": 48.11,
"GPQA": 10.85,
"MUSR": 13.17,
"MMLU_PRO": 48.59,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/bloom-14b-stock",
"known_config": "null"
},
{
"rank": 93,
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01",
"scores": {
"average": 40.28,
"IFEval": 68.72,
"BBH": 47.71,
"MATH": 39.95,
"GPQA": 18.23,
"MUSR": 19.56,
"MMLU_PRO": 47.5,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01",
"known_config": "null"
},
{
"rank": 94,
"name": "Quazim0t0/Halo-14B-sce",
"scores": {
"average": 40.26,
"IFEval": 67.54,
"BBH": 55.27,
"MATH": 42.9,
"GPQA": 12.98,
"MUSR": 14.24,
"MMLU_PRO": 48.63,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/Quazim0t0/Halo-14B-sce",
"known_config": "null"
},
{
"rank": 95,
"name": "prithivMLmods/Calcium-Opus-14B-Elite2",
"scores": {
"average": 40.25,
"IFEval": 61.76,
"BBH": 46.81,
"MATH": 46.9,
"GPQA": 16,
"MUSR": 22.24,
"MMLU_PRO": 47.79,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.766B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/prithivMLmods/Calcium-Opus-14B-Elite2",
"known_config": "null"
},
{
"rank": 96,
"name": "SicariusSicariiStuff/Impish_QWEN_14B-1M",
"scores": {
"average": 40.24,
"IFEval": 78.68,
"BBH": 47.22,
"MATH": 39.65,
"GPQA": 13.42,
"MUSR": 17.52,
"MMLU_PRO": 44.93,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/SicariusSicariiStuff/Impish_QWEN_14B-1M",
"known_config": "null"
},
{
"rank": 97,
"name": "bunnycore/Phi-4-Stock-Ex",
"scores": {
"average": 40.22,
"IFEval": 65.75,
"BBH": 55.2,
"MATH": 40.86,
"GPQA": 13.42,
"MUSR": 17.46,
"MMLU_PRO": 48.61,
"Architecture": "LlamaForCausalLM",
"Parameters": "14.66B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/bunnycore/Phi-4-Stock-Ex",
"known_config": "null"
},
{
"rank": 98,
"name": "sometimesanotion/Qwenvergence-14B-qv256",
"scores": {
"average": 40.12,
"IFEval": 70.06,
"BBH": 47.08,
"MATH": 38.97,
"GPQA": 17.11,
"MUSR": 21.07,
"MMLU_PRO": 46.42,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14B",
"Chat_Template": "No"
},
"hf_url": "https://huggingface.co/sometimesanotion/Qwenvergence-14B-qv256",
"known_config": "null"
},
{
"rank": 99,
"name": "tensopolis/virtuoso-small-tensopolis-v2",
"scores": {
"average": 40.11,
"IFEval": 80.2,
"BBH": 50.23,
"MATH": 38.75,
"GPQA": 10.51,
"MUSR": 14.84,
"MMLU_PRO": 46.15,
"Architecture": "Qwen2ForCausalLM",
"Parameters": "14.77B",
"Chat_Template": "Yes"
},
"hf_url": "https://huggingface.co/tensopolis/virtuoso-small-tensopolis-v2",
"known_config": "null"
}
]
]
def snippet_scrape_model_page(url):
"""
Equivalent scraping function for the larger dataset
to look for <pre> YAML and a .metadata section.
"""
try:
response = requests.get(url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return {
"yaml_configuration": yaml_text,
"metadata": metadata_text
}
except Exception as e:
return f"Error: {str(e)}"
def snippet_print_benchmark_and_config_info(model_info):
"""
Prints an overview for each model in the rank=44..105 dataset.
If known_config is not None, prints it. Otherwise attempts to scrape.
"""
print(f"---\nModel Rank: {model_info['rank']}")
print(f"Model Name: {model_info['name']}")
print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
print(f"Models average score on BBH benchmarks in %: {model_info['scores']['BBH']}")
print(f"Models average score on MATH benchmarks in %: {model_info['scores']['MATH']}")
print(f"Models average score in GPQA benchmarks in %: {model_info['scores']['GPQA']}")
print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
print(f"Models average score in MMLU_PRO benchmarks in %: {model_info['scores']['MMLU_PRO']}")
# If there's a known_config, print it in YAML form and stop.
if model_info["known_config"] is not None:
print("###")
print("models:")
for m in model_info["known_config"]["models"]:
print(f" - model: {m['model']}")
print(f"merge_method: {model_info['known_config']['merge_method']}")
print(f"base_model: {model_info['known_config']['base_model']}")
print(f"dtype: {model_info['known_config']['dtype']}")
print("parameters:")
t_vals = model_info["known_config"]["parameters"]["t"]
print(f" t: {t_vals} # V shaped curve: Hermes for input & output, WizardMath in the middle layers")
print("###")
return
# Otherwise, do scraping:
scraped = snippet_scrape_model_page(model_info["hf_url"])
if isinstance(scraped, str):
# Means it's an error string or something
print("(No MergeKit configuration found or scraping error.)")
print(scraped)
return
else:
# It's presumably a dict
if "No YAML configuration found." in scraped["yaml_configuration"]:
print("(No MergeKit configuration found.)\n")
print("You can try the following Python script to scrape the model page:\n")
print("#" * 70)
print(f'''import requests
from bs4 import BeautifulSoup
def scrape_model_page(model_url):
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return {{
"yaml_configuration": yaml_text,
"metadata": metadata_text
}}
except Exception as e:
return f"Error: {{str(e)}}"
if __name__ == "__main__":
model_url = "{model_info['hf_url']}"
result = scrape_model_page(model_url)
print(result)''')
print("#" * 70)
else:
# Found some YAML
print("###")
print(scraped["yaml_configuration"])
print("###")
def run_non_tiny_benchmarks():
"""
Captures the stdout from printing each model in benchmark_data (ranks 44..105),
returning the entire output as a single string for Gradio to display.
"""
old_stdout = sys.stdout
buffer = io.StringIO()
sys.stdout = buffer
for model in benchmark_data:
snippet_print_benchmark_and_config_info(model)
sys.stdout = old_stdout
return buffer.getvalue()
# --------------------------------------------------------------------
# PART 3: The Gradio App
# --------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
# The existing UI for the ΓÇ£tinyΓÇ¥ data
with gr.Row():
btn1 = gr.Button("Show Average Performance")
img1 = gr.Image(type="pil", label="Average Performance Plot")
img1_download = gr.File(label="Download Average Performance")
btn1.click(plot_average_scores, outputs=[img1, img1_download])
with gr.Row():
btn2 = gr.Button("Show Task Performance")
img2 = gr.Image(type="pil", label="Task Performance Plot")
img2_download = gr.File(label="Download Task Performance")
btn2.click(plot_task_performance, outputs=[img2, img2_download])
with gr.Row():
btn3 = gr.Button("Task-Specific Top Models")
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
img3_download = gr.File(label="Download Top Models")
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
with gr.Row():
btn4 = gr.Button("Plot Performance Heatmap")
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
heatmap_download = gr.File(label="Download Heatmap")
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
# Scraping & YAML handling for the *tiny* table
with gr.Row():
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
with gr.Column():
scrape_btn = gr.Button("Scrape MergeKit Configuration")
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
with gr.Column():
save_yaml_btn = gr.Button("Save MergeKit Configuration")
yaml_download = gr.File(label="Download MergeKit Configuration")
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
# Download everything (CSV, plots, any found YAML)
with gr.Row():
download_all_btn = gr.Button("Download Everything")
all_downloads = gr.File(label="Download All Data")
download_all_btn.click(download_all_data, outputs=all_downloads)
# Live Scraping
gr.Markdown("## Live Scraping Features")
with gr.Row():
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
live_scrape_btn = gr.Button("Scrape Model Page")
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
# Non-Tiny Benchmarks
gr.Markdown("## Non-Tiny Benchmark Parser (Ranks 44ΓÇô105)")
with gr.Row():
parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)
parse_non_tiny_btn.click(fn=run_non_tiny_benchmarks, outputs=parse_non_tiny_output)
demo.launch()