|
import gradio as gr |
|
import numpy as np |
|
import requests |
|
|
|
import hopsworks |
|
import joblib |
|
|
|
project = hopsworks.login() |
|
fs = project.get_feature_store() |
|
|
|
|
|
mr = project.get_model_registry() |
|
model = mr.get_model("titanic_modal", version=3) |
|
model_dir = model.download() |
|
model = joblib.load(model_dir + "/titanic_model.pkl") |
|
|
|
|
|
def titanic(age, sex, pclass, fare): |
|
input_list = [] |
|
input_list.append(age) |
|
input_list.append(sex) |
|
input_list.append(pclass) |
|
input_list.append(fare) |
|
|
|
res = model.predict(np.asarray(input_list).reshape(1, -1)) |
|
|
|
|
|
if res == 0: |
|
output = "This individual probably survived the crash." |
|
else: |
|
output = "This individual unfortunately probably did not survive the crash." |
|
return output |
|
|
|
demo = gr.Interface( |
|
fn=titanic, |
|
title="Titanic survivor analytics", |
|
description="Experiment with personal data to predict whether a person would survive the Titanic", |
|
allow_flagging="never", |
|
inputs=[ |
|
gr.inputs.Number(default=30.0, label=" Age "), |
|
gr.inputs.Number(default=1, label=" Sex (0 = Female, 1 = Male) "), |
|
gr.inputs.Number(default=2, label=" Ticket class (1 = first, 2 = second, 3 = third) "), |
|
gr.inputs.Number(default=1.0, label=" Passenger fare ()"), |
|
], |
|
outputs=gr.outputs.Textbox(label='Prediction')) |
|
|
|
demo.launch() |
|
|
|
|