PPLX1 / app.py
CryptoScoutv1's picture
Create app.py
e3e55df
import gradio as gr
from llama_index.llms import Perplexity
from llama_index.llms.base import ChatMessage
# Define the main function for handling chat interactions.
def chat_with_pplx_model(api_key, model_name, user_input, pre_prompt, system_message, temperature, max_tokens):
# Convert max_tokens to integer if it is not empty. This controls the length of the model's responses.
max_tokens = int(max_tokens) if max_tokens else None
# Prepend the pre-prompt text to the user input. This allows for setting a context or instructions.
full_user_input = f"{pre_prompt}\n{user_input}"
# Initialize the Perplexity model with the given parameters.
llm = Perplexity(
api_key=api_key,
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens # If max_tokens is None, the model uses its default value.
)
# Prepare the chat messages for interaction with the model.
messages_dict = [
{"role": "system", "content": system_message}, # System message, like an initial greeting or instructions.
{"role": "user", "content": full_user_input} # The actual user input, prepended with the pre_prompt.
]
messages = [ChatMessage(**msg) for msg in messages_dict]
# Get the response from the LLM.
response = llm.chat(messages)
return response
# Gradio Interface components.
api_key_input = gr.Textbox(label="API Key") # Input for the API key.
model_name_dropdown = gr.Dropdown(choices=["pplx-70b-online", "pplx-7b-online", "mixtral-8x7b-instruct"], label="LLM Model Name") # Input for the model name.
user_input = gr.Textbox(placeholder="Enter your input here", label="User Input") # Input for user's message.
pre_prompt_input = gr.Textbox(placeholder="Enter pre-prompt here", label="Pre-Prompt") # Input for the pre-prompt text.
system_message = gr.Textbox(placeholder="Enter system message here", label="System Message") # Input for system message.
temperature_slider = gr.Slider(minimum=0, maximum=2, step=0.01, label="Temperature") # Slider to adjust the temperature.
max_tokens_input = gr.Textbox(placeholder="Enter max tokens (optional)", label="Max Tokens") # Input for max tokens.
# Creating the Gradio interface.
iface = gr.Interface(
fn=chat_with_pplx_model,
inputs=[api_key_input, model_name_dropdown, user_input, pre_prompt_input, system_message, temperature_slider, max_tokens_input],
outputs="text"
)
# Launching the interface.
iface.launch(share=True)