Spaces:
Paused
Paused
Upload 54 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- app.py +256 -0
- enviroment.yaml +125 -0
- gradio_cached_examples/19/component 0/3725061b1c373489a048/000003.mp4 +0 -0
- gradio_cached_examples/19/component 0/a21547779ff20817de06/000002.mp4 +0 -0
- gradio_cached_examples/19/component 0/ab669c2acaeb6f957c50/000001.mp4 +0 -0
- gradio_cached_examples/19/component 0/ceca750cda163ac6f548/000000.mp4 +0 -0
- gradio_cached_examples/19/log.csv +5 -0
- lcm_scheduler.py +468 -0
- outputs_gradio/000000.mp4 +0 -0
- outputs_gradio/000001.mp4 +0 -0
- outputs_gradio/000002.mp4 +0 -0
- outputs_gradio/000003.mp4 +0 -0
- outputs_gradio/000004.mp4 +0 -0
- outputs_gradio/000005.mp4 +0 -0
- pipeline.py +711 -0
- requirements.txt +4 -0
- safetensors/AnimateLCM-SVD-xt-1.1.safetensors +3 -0
- safetensors/AnimateLCM-SVD-xt.safetensors +3 -0
- test_imgs/ai-generated-8255456_1280.png +3 -0
- test_imgs/ai-generated-8411866_1280.jpg +0 -0
- test_imgs/ai-generated-8463496_1280.jpg +0 -0
- test_imgs/ai-generated-8476858_1280.png +0 -0
- test_imgs/ai-generated-8479572_1280.jpg +0 -0
- test_imgs/ai-generated-8481641_1280.jpg +0 -0
- test_imgs/ai-generated-8489879_1280.png +3 -0
- test_imgs/ai-generated-8496135_1280.jpg +0 -0
- test_imgs/ai-generated-8496952_1280.jpg +0 -0
- test_imgs/ai-generated-8498844_1280.jpg +0 -0
- test_imgs/bird-7411270_1280.jpg +0 -0
- test_imgs/bird-7586857_1280.jpg +0 -0
- test_imgs/bird-8014191_1280.jpg +0 -0
- test_imgs/couple-8019370_1280.jpg +0 -0
- test_imgs/cupcakes-380178_1280.jpg +0 -0
- test_imgs/dog-7330712_1280.jpg +0 -0
- test_imgs/dog-7396912_1280.jpg +0 -0
- test_imgs/girl-4898696_1280.jpg +0 -0
- test_imgs/grey-capped-flycatcher-8071233_1280.jpg +0 -0
- test_imgs/halloween-4585684_1280.jpg +0 -0
- test_imgs/leaf-7260246_1280.jpg +0 -0
- test_imgs/meerkat-7465819_1280.jpg +0 -0
- test_imgs/mobile-phone-1875813_1280.jpg +0 -0
- test_imgs/mother-8097324_1280.jpg +0 -0
- test_imgs/plane-8145957_1280.jpg +0 -0
- test_imgs/power-station-6579092_1280.jpg +0 -0
- test_imgs/ship-7833921_1280.jpg +0 -0
- test_imgs/sleep-7871915_1280.jpg +0 -0
- test_imgs/squirrel-7985502_1280.jpg +0 -0
- test_imgs/squirrel-8211238_1280.jpg +0 -0
- test_imgs/training-8122941_1280.jpg +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
test_imgs/ai-generated-8255456_1280.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
test_imgs/ai-generated-8489879_1280.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
# import gradio.helpers
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
from glob import glob
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Optional
|
| 9 |
+
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from diffusers.utils import load_image, export_to_video
|
| 12 |
+
from pipeline import StableVideoDiffusionPipeline
|
| 13 |
+
|
| 14 |
+
import random
|
| 15 |
+
from safetensors import safe_open
|
| 16 |
+
from lcm_scheduler import AnimateLCMSVDStochasticIterativeScheduler
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_safetensors_files():
|
| 20 |
+
models_dir = "./safetensors"
|
| 21 |
+
safetensors_files = [
|
| 22 |
+
f for f in os.listdir(models_dir) if f.endswith(".safetensors")
|
| 23 |
+
]
|
| 24 |
+
return safetensors_files
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def model_select(selected_file):
|
| 28 |
+
print("load model weights", selected_file)
|
| 29 |
+
pipe.unet.cpu()
|
| 30 |
+
file_path = os.path.join("./safetensors", selected_file)
|
| 31 |
+
state_dict = {}
|
| 32 |
+
with safe_open(file_path, framework="pt", device="cpu") as f:
|
| 33 |
+
for key in f.keys():
|
| 34 |
+
state_dict[key] = f.get_tensor(key)
|
| 35 |
+
missing, unexpected = pipe.unet.load_state_dict(state_dict, strict=True)
|
| 36 |
+
pipe.unet.cuda()
|
| 37 |
+
del state_dict
|
| 38 |
+
return
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
noise_scheduler = AnimateLCMSVDStochasticIterativeScheduler(
|
| 42 |
+
num_train_timesteps=40,
|
| 43 |
+
sigma_min=0.002,
|
| 44 |
+
sigma_max=700.0,
|
| 45 |
+
sigma_data=1.0,
|
| 46 |
+
s_noise=1.0,
|
| 47 |
+
rho=7,
|
| 48 |
+
clip_denoised=False,
|
| 49 |
+
)
|
| 50 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 51 |
+
"stabilityai/stable-video-diffusion-img2vid-xt",
|
| 52 |
+
scheduler=noise_scheduler,
|
| 53 |
+
torch_dtype=torch.float16,
|
| 54 |
+
variant="fp16",
|
| 55 |
+
)
|
| 56 |
+
pipe.to("cuda")
|
| 57 |
+
pipe.enable_model_cpu_offload() # for smaller cost
|
| 58 |
+
model_select("AnimateLCM-SVD-xt.safetensors")
|
| 59 |
+
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # for faster inference
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
max_64_bit_int = 2**63 - 1
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def sample(
|
| 66 |
+
image: Image,
|
| 67 |
+
seed: Optional[int] = 42,
|
| 68 |
+
randomize_seed: bool = False,
|
| 69 |
+
motion_bucket_id: int = 80,
|
| 70 |
+
fps_id: int = 8,
|
| 71 |
+
max_guidance_scale: float = 1.2,
|
| 72 |
+
min_guidance_scale: float = 1,
|
| 73 |
+
width: int = 1024,
|
| 74 |
+
height: int = 576,
|
| 75 |
+
num_inference_steps: int = 4,
|
| 76 |
+
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 77 |
+
output_folder: str = "outputs_gradio",
|
| 78 |
+
):
|
| 79 |
+
if image.mode == "RGBA":
|
| 80 |
+
image = image.convert("RGB")
|
| 81 |
+
|
| 82 |
+
if randomize_seed:
|
| 83 |
+
seed = random.randint(0, max_64_bit_int)
|
| 84 |
+
generator = torch.manual_seed(seed)
|
| 85 |
+
|
| 86 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 87 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 88 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 89 |
+
|
| 90 |
+
with torch.autocast("cuda"):
|
| 91 |
+
frames = pipe(
|
| 92 |
+
image,
|
| 93 |
+
decode_chunk_size=decoding_t,
|
| 94 |
+
generator=generator,
|
| 95 |
+
motion_bucket_id=motion_bucket_id,
|
| 96 |
+
height=height,
|
| 97 |
+
width=width,
|
| 98 |
+
num_inference_steps=num_inference_steps,
|
| 99 |
+
min_guidance_scale=min_guidance_scale,
|
| 100 |
+
max_guidance_scale=max_guidance_scale,
|
| 101 |
+
).frames[0]
|
| 102 |
+
export_to_video(frames, video_path, fps=fps_id)
|
| 103 |
+
torch.manual_seed(seed)
|
| 104 |
+
|
| 105 |
+
return video_path, seed
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def resize_image(image, output_size=(1024, 576)):
|
| 109 |
+
# Calculate aspect ratios
|
| 110 |
+
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
| 111 |
+
image_aspect = image.width / image.height # Aspect ratio of the original image
|
| 112 |
+
|
| 113 |
+
# Resize then crop if the original image is larger
|
| 114 |
+
if image_aspect > target_aspect:
|
| 115 |
+
# Resize the image to match the target height, maintaining aspect ratio
|
| 116 |
+
new_height = output_size[1]
|
| 117 |
+
new_width = int(new_height * image_aspect)
|
| 118 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 119 |
+
# Calculate coordinates for cropping
|
| 120 |
+
left = (new_width - output_size[0]) / 2
|
| 121 |
+
top = 0
|
| 122 |
+
right = (new_width + output_size[0]) / 2
|
| 123 |
+
bottom = output_size[1]
|
| 124 |
+
else:
|
| 125 |
+
# Resize the image to match the target width, maintaining aspect ratio
|
| 126 |
+
new_width = output_size[0]
|
| 127 |
+
new_height = int(new_width / image_aspect)
|
| 128 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 129 |
+
# Calculate coordinates for cropping
|
| 130 |
+
left = 0
|
| 131 |
+
top = (new_height - output_size[1]) / 2
|
| 132 |
+
right = output_size[0]
|
| 133 |
+
bottom = (new_height + output_size[1]) / 2
|
| 134 |
+
|
| 135 |
+
# Crop the image
|
| 136 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
| 137 |
+
return cropped_image
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
with gr.Blocks() as demo:
|
| 141 |
+
gr.Markdown(
|
| 142 |
+
"""
|
| 143 |
+
# [AnimateLCM: Accelerating the Animation of Personalized Diffusion Models and Adapters with Decoupled Consistency Learning](https://arxiv.org/abs/2402.00769)
|
| 144 |
+
Fu-Yun Wang, Zhaoyang Huang (*Corresponding Author), Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, Hongsheng Li (*Corresponding Author)<br>
|
| 145 |
+
[arXiv Report](https://arxiv.org/abs/2402.00769) | [Project Page](https://animatelcm.github.io/) | [Github](https://github.com/G-U-N/AnimateLCM) | [Civitai](https://civitai.com/models/290375/animatelcm-fast-video-generation) | [Replicate](https://replicate.com/camenduru/animate-lcm)
|
| 146 |
+
Related Models:
|
| 147 |
+
[AnimateLCM-t2v](https://huggingface.co/wangfuyun/AnimateLCM): Personalized Text-to-Video Generation
|
| 148 |
+
[AnimateLCM-SVD-xt](https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt): General Image-to-Video Generation
|
| 149 |
+
[AnimateLCM-i2v](https://huggingface.co/wangfuyun/AnimateLCM-I2V): Personalized Image-to-Video Generation
|
| 150 |
+
"""
|
| 151 |
+
)
|
| 152 |
+
with gr.Row():
|
| 153 |
+
with gr.Column():
|
| 154 |
+
image = gr.Image(label="Upload your image", type="pil")
|
| 155 |
+
generate_btn = gr.Button("Generate")
|
| 156 |
+
video = gr.Video()
|
| 157 |
+
with gr.Accordion("Advanced options", open=False):
|
| 158 |
+
safetensors_dropdown = gr.Dropdown(
|
| 159 |
+
label="Choose Safetensors", choices=get_safetensors_files()
|
| 160 |
+
)
|
| 161 |
+
seed = gr.Slider(
|
| 162 |
+
label="Seed",
|
| 163 |
+
value=42,
|
| 164 |
+
randomize=False,
|
| 165 |
+
minimum=0,
|
| 166 |
+
maximum=max_64_bit_int,
|
| 167 |
+
step=1,
|
| 168 |
+
)
|
| 169 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
| 170 |
+
motion_bucket_id = gr.Slider(
|
| 171 |
+
label="Motion bucket id",
|
| 172 |
+
info="Controls how much motion to add/remove from the image",
|
| 173 |
+
value=80,
|
| 174 |
+
minimum=1,
|
| 175 |
+
maximum=255,
|
| 176 |
+
)
|
| 177 |
+
fps_id = gr.Slider(
|
| 178 |
+
label="Frames per second",
|
| 179 |
+
info="The length of your video in seconds will be 25/fps",
|
| 180 |
+
value=8,
|
| 181 |
+
minimum=5,
|
| 182 |
+
maximum=30,
|
| 183 |
+
)
|
| 184 |
+
width = gr.Slider(
|
| 185 |
+
label="Width of input image",
|
| 186 |
+
info="It should be divisible by 64",
|
| 187 |
+
value=1024,
|
| 188 |
+
minimum=576,
|
| 189 |
+
maximum=2048,
|
| 190 |
+
)
|
| 191 |
+
height = gr.Slider(
|
| 192 |
+
label="Height of input image",
|
| 193 |
+
info="It should be divisible by 64",
|
| 194 |
+
value=576,
|
| 195 |
+
minimum=320,
|
| 196 |
+
maximum=1152,
|
| 197 |
+
)
|
| 198 |
+
max_guidance_scale = gr.Slider(
|
| 199 |
+
label="Max guidance scale",
|
| 200 |
+
info="classifier-free guidance strength",
|
| 201 |
+
value=1.2,
|
| 202 |
+
minimum=1,
|
| 203 |
+
maximum=2,
|
| 204 |
+
)
|
| 205 |
+
min_guidance_scale = gr.Slider(
|
| 206 |
+
label="Min guidance scale",
|
| 207 |
+
info="classifier-free guidance strength",
|
| 208 |
+
value=1,
|
| 209 |
+
minimum=1,
|
| 210 |
+
maximum=1.5,
|
| 211 |
+
)
|
| 212 |
+
num_inference_steps = gr.Slider(
|
| 213 |
+
label="Num inference steps",
|
| 214 |
+
info="steps for inference",
|
| 215 |
+
value=4,
|
| 216 |
+
minimum=1,
|
| 217 |
+
maximum=20,
|
| 218 |
+
step=1,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 222 |
+
generate_btn.click(
|
| 223 |
+
fn=sample,
|
| 224 |
+
inputs=[
|
| 225 |
+
image,
|
| 226 |
+
seed,
|
| 227 |
+
randomize_seed,
|
| 228 |
+
motion_bucket_id,
|
| 229 |
+
fps_id,
|
| 230 |
+
max_guidance_scale,
|
| 231 |
+
min_guidance_scale,
|
| 232 |
+
width,
|
| 233 |
+
height,
|
| 234 |
+
num_inference_steps,
|
| 235 |
+
],
|
| 236 |
+
outputs=[video, seed],
|
| 237 |
+
api_name="video",
|
| 238 |
+
)
|
| 239 |
+
safetensors_dropdown.change(fn=model_select, inputs=safetensors_dropdown)
|
| 240 |
+
|
| 241 |
+
gr.Examples(
|
| 242 |
+
examples=[
|
| 243 |
+
"test_imgs/ai-generated-8255456_1280.png",
|
| 244 |
+
"test_imgs/ai-generated-8496135_1280.jpg",
|
| 245 |
+
"test_imgs/dog-7396912_1280.jpg",
|
| 246 |
+
"test_imgs/ship-7833921_1280.jpg",
|
| 247 |
+
],
|
| 248 |
+
inputs=image,
|
| 249 |
+
outputs=[video, seed],
|
| 250 |
+
fn=sample,
|
| 251 |
+
cache_examples=True,
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
if __name__ == "__main__":
|
| 255 |
+
demo.queue(max_size=20, api_open=False)
|
| 256 |
+
demo.launch(share=True, show_api=False)
|
enviroment.yaml
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: svd
|
| 2 |
+
channels:
|
| 3 |
+
- defaults
|
| 4 |
+
dependencies:
|
| 5 |
+
- _libgcc_mutex=0.1=main
|
| 6 |
+
- _openmp_mutex=5.1=1_gnu
|
| 7 |
+
- ca-certificates=2023.12.12=h06a4308_0
|
| 8 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
| 9 |
+
- libffi=3.4.4=h6a678d5_0
|
| 10 |
+
- libgcc-ng=11.2.0=h1234567_1
|
| 11 |
+
- libgomp=11.2.0=h1234567_1
|
| 12 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
| 13 |
+
- ncurses=6.4=h6a678d5_0
|
| 14 |
+
- openssl=3.0.12=h7f8727e_0
|
| 15 |
+
- pip=23.3.1=py39h06a4308_0
|
| 16 |
+
- python=3.9.18=h955ad1f_0
|
| 17 |
+
- readline=8.2=h5eee18b_0
|
| 18 |
+
- setuptools=68.2.2=py39h06a4308_0
|
| 19 |
+
- sqlite=3.41.2=h5eee18b_0
|
| 20 |
+
- tk=8.6.12=h1ccaba5_0
|
| 21 |
+
- wheel=0.41.2=py39h06a4308_0
|
| 22 |
+
- xz=5.4.5=h5eee18b_0
|
| 23 |
+
- zlib=1.2.13=h5eee18b_0
|
| 24 |
+
- pip:
|
| 25 |
+
- accelerate==0.26.1
|
| 26 |
+
- albumentations==1.3.1
|
| 27 |
+
- antlr4-python3-runtime==4.9.3
|
| 28 |
+
- appdirs==1.4.4
|
| 29 |
+
- bitsandbytes==0.42.0
|
| 30 |
+
- braceexpand==0.1.7
|
| 31 |
+
- brotli==1.1.0
|
| 32 |
+
- certifi==2023.11.17
|
| 33 |
+
- cffi==1.16.0
|
| 34 |
+
- charset-normalizer==3.3.2
|
| 35 |
+
- click==8.1.7
|
| 36 |
+
- dataclasses==0.6
|
| 37 |
+
- decord==0.6.0
|
| 38 |
+
- diffusers==0.25.1
|
| 39 |
+
- docker-pycreds==0.4.0
|
| 40 |
+
- docopt==0.6.2
|
| 41 |
+
- einops==0.7.0
|
| 42 |
+
- exifread-nocycle==3.0.1
|
| 43 |
+
- ffmpeg-python==0.2.0
|
| 44 |
+
- filelock==3.13.1
|
| 45 |
+
- fire==0.5.0
|
| 46 |
+
- fsspec==2023.12.2
|
| 47 |
+
- future==0.18.3
|
| 48 |
+
- gitdb==4.0.11
|
| 49 |
+
- gitpython==3.1.41
|
| 50 |
+
- huggingface-hub==0.20.3
|
| 51 |
+
- idna==3.6
|
| 52 |
+
- imageio==2.33.1
|
| 53 |
+
- img2dataset==1.45.0
|
| 54 |
+
- importlib-metadata==7.0.1
|
| 55 |
+
- jinja2==3.1.3
|
| 56 |
+
- joblib==1.3.2
|
| 57 |
+
- langdetect==1.0.9
|
| 58 |
+
- lazy-loader==0.3
|
| 59 |
+
- markupsafe==2.1.4
|
| 60 |
+
- mpmath==1.3.0
|
| 61 |
+
- mutagen==1.47.0
|
| 62 |
+
- networkx==3.2.1
|
| 63 |
+
- numpy==1.26.3
|
| 64 |
+
- nvidia-cublas-cu12==12.1.3.1
|
| 65 |
+
- nvidia-cuda-cupti-cu12==12.1.105
|
| 66 |
+
- nvidia-cuda-nvrtc-cu12==12.1.105
|
| 67 |
+
- nvidia-cuda-runtime-cu12==12.1.105
|
| 68 |
+
- nvidia-cudnn-cu12==8.9.2.26
|
| 69 |
+
- nvidia-cufft-cu12==11.0.2.54
|
| 70 |
+
- nvidia-curand-cu12==10.3.2.106
|
| 71 |
+
- nvidia-cusolver-cu12==11.4.5.107
|
| 72 |
+
- nvidia-cusparse-cu12==12.1.0.106
|
| 73 |
+
- nvidia-nccl-cu12==2.19.3
|
| 74 |
+
- nvidia-nvjitlink-cu12==12.3.101
|
| 75 |
+
- nvidia-nvtx-cu12==12.1.105
|
| 76 |
+
- omegaconf==2.3.0
|
| 77 |
+
- opencv-python==4.9.0.80
|
| 78 |
+
- opencv-python-headless==4.9.0.80
|
| 79 |
+
- packaging==23.2
|
| 80 |
+
- pandas==2.2.0
|
| 81 |
+
- pillow==10.2.0
|
| 82 |
+
- platformdirs==4.1.0
|
| 83 |
+
- protobuf==4.25.2
|
| 84 |
+
- psutil==5.9.8
|
| 85 |
+
- pyarrow==15.0.0
|
| 86 |
+
- pycparser==2.21
|
| 87 |
+
- pycryptodomex==3.20.0
|
| 88 |
+
- python-dateutil==2.8.2
|
| 89 |
+
- pytz==2023.3.post1
|
| 90 |
+
- pyyaml==6.0.1
|
| 91 |
+
- qudida==0.0.4
|
| 92 |
+
- regex==2023.12.25
|
| 93 |
+
- requests==2.31.0
|
| 94 |
+
- safetensors==0.4.2
|
| 95 |
+
- scenedetect==0.6.2
|
| 96 |
+
- scikit-image==0.22.0
|
| 97 |
+
- scikit-learn==1.4.0
|
| 98 |
+
- scipy==1.12.0
|
| 99 |
+
- sentry-sdk==1.39.2
|
| 100 |
+
- setproctitle==1.3.3
|
| 101 |
+
- six==1.16.0
|
| 102 |
+
- smmap==5.0.1
|
| 103 |
+
- soundfile==0.12.1
|
| 104 |
+
- sympy==1.12
|
| 105 |
+
- termcolor==2.4.0
|
| 106 |
+
- threadpoolctl==3.2.0
|
| 107 |
+
- tifffile==2023.12.9
|
| 108 |
+
- timeout-decorator==0.5.0
|
| 109 |
+
- tokenizers==0.15.1
|
| 110 |
+
- torch==2.2.0
|
| 111 |
+
- torchdata==0.7.1
|
| 112 |
+
- torchvision==0.17.0
|
| 113 |
+
- tqdm==4.66.1
|
| 114 |
+
- transformers==4.37.0
|
| 115 |
+
- triton==2.2.0
|
| 116 |
+
- typing-extensions==4.9.0
|
| 117 |
+
- tzdata==2023.4
|
| 118 |
+
- urllib3==2.1.0
|
| 119 |
+
- wandb==0.16.2
|
| 120 |
+
- webdataset==0.2.86
|
| 121 |
+
- websockets==12.0
|
| 122 |
+
- webvtt-py==0.4.6
|
| 123 |
+
- xformers==0.0.24
|
| 124 |
+
- yt-dlp==2023.12.30
|
| 125 |
+
- zipp==3.17.0
|
gradio_cached_examples/19/component 0/3725061b1c373489a048/000003.mp4
ADDED
|
Binary file (734 kB). View file
|
|
|
gradio_cached_examples/19/component 0/a21547779ff20817de06/000002.mp4
ADDED
|
Binary file (393 kB). View file
|
|
|
gradio_cached_examples/19/component 0/ab669c2acaeb6f957c50/000001.mp4
ADDED
|
Binary file (848 kB). View file
|
|
|
gradio_cached_examples/19/component 0/ceca750cda163ac6f548/000000.mp4
ADDED
|
Binary file (641 kB). View file
|
|
|
gradio_cached_examples/19/log.csv
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
component 0,Seed,flag,username,timestamp
|
| 2 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/ceca750cda163ac6f548/000000.mp4"",""url"":""/file=/tmp/gradio/2879d2ca96d58c8931b302213e276f4955b51afa/000000.mp4"",""size"":null,""orig_name"":""000000.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:49:43.926703
|
| 3 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/ab669c2acaeb6f957c50/000001.mp4"",""url"":""/file=/tmp/gradio/3fe5de118a0bc4b9e389758b5bfb2a9682e9ec4f/000001.mp4"",""size"":null,""orig_name"":""000001.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:50:17.506490
|
| 4 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/a21547779ff20817de06/000002.mp4"",""url"":""/file=/tmp/gradio/7bb404b88df0715738e14aa3e0d5d6975d90ad87/000002.mp4"",""size"":null,""orig_name"":""000002.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:50:51.099873
|
| 5 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/3725061b1c373489a048/000003.mp4"",""url"":""/file=/tmp/gradio/515c7849b4b9b1de0fdded51f77517bd15f92734/000003.mp4"",""size"":null,""orig_name"":""000003.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:51:24.329419
|
lcm_scheduler.py
ADDED
|
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from diffusers.utils import BaseOutput, logging
|
| 23 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 24 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class AnimateLCMSVDStochasticIterativeSchedulerOutput(BaseOutput):
|
| 32 |
+
"""
|
| 33 |
+
Output class for the scheduler's `step` function.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 37 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
| 38 |
+
denoising loop.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
prev_sample: torch.FloatTensor
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class AnimateLCMSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
|
| 45 |
+
"""
|
| 46 |
+
Multistep and onestep sampling for consistency models.
|
| 47 |
+
|
| 48 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
| 49 |
+
methods the library implements for all schedulers such as loading and saving.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
num_train_timesteps (`int`, defaults to 40):
|
| 53 |
+
The number of diffusion steps to train the model.
|
| 54 |
+
sigma_min (`float`, defaults to 0.002):
|
| 55 |
+
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
|
| 56 |
+
sigma_max (`float`, defaults to 80.0):
|
| 57 |
+
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
|
| 58 |
+
sigma_data (`float`, defaults to 0.5):
|
| 59 |
+
The standard deviation of the data distribution from the EDM
|
| 60 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
|
| 61 |
+
s_noise (`float`, defaults to 1.0):
|
| 62 |
+
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
|
| 63 |
+
1.011]. Defaults to 1.0 from the original implementation.
|
| 64 |
+
rho (`float`, defaults to 7.0):
|
| 65 |
+
The parameter for calculating the Karras sigma schedule from the EDM
|
| 66 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
|
| 67 |
+
clip_denoised (`bool`, defaults to `True`):
|
| 68 |
+
Whether to clip the denoised outputs to `(-1, 1)`.
|
| 69 |
+
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
|
| 70 |
+
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
|
| 71 |
+
increasing order.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
order = 1
|
| 75 |
+
|
| 76 |
+
@register_to_config
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
num_train_timesteps: int = 40,
|
| 80 |
+
sigma_min: float = 0.002,
|
| 81 |
+
sigma_max: float = 80.0,
|
| 82 |
+
sigma_data: float = 0.5,
|
| 83 |
+
s_noise: float = 1.0,
|
| 84 |
+
rho: float = 7.0,
|
| 85 |
+
clip_denoised: bool = True,
|
| 86 |
+
):
|
| 87 |
+
# standard deviation of the initial noise distribution
|
| 88 |
+
self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5
|
| 89 |
+
# self.init_noise_sigma = sigma_max
|
| 90 |
+
|
| 91 |
+
ramp = np.linspace(0, 1, num_train_timesteps)
|
| 92 |
+
sigmas = self._convert_to_karras(ramp)
|
| 93 |
+
sigmas = np.concatenate([sigmas, np.array([0])])
|
| 94 |
+
timesteps = self.sigma_to_t(sigmas)
|
| 95 |
+
|
| 96 |
+
# setable values
|
| 97 |
+
self.num_inference_steps = None
|
| 98 |
+
self.sigmas = torch.from_numpy(sigmas)
|
| 99 |
+
self.timesteps = torch.from_numpy(timesteps)
|
| 100 |
+
self.custom_timesteps = False
|
| 101 |
+
self.is_scale_input_called = False
|
| 102 |
+
self._step_index = None
|
| 103 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
| 104 |
+
|
| 105 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 106 |
+
if schedule_timesteps is None:
|
| 107 |
+
schedule_timesteps = self.timesteps
|
| 108 |
+
|
| 109 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
| 110 |
+
return indices.item()
|
| 111 |
+
|
| 112 |
+
@property
|
| 113 |
+
def step_index(self):
|
| 114 |
+
"""
|
| 115 |
+
The index counter for current timestep. It will increae 1 after each scheduler step.
|
| 116 |
+
"""
|
| 117 |
+
return self._step_index
|
| 118 |
+
|
| 119 |
+
def scale_model_input(
|
| 120 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
| 121 |
+
) -> torch.FloatTensor:
|
| 122 |
+
"""
|
| 123 |
+
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
sample (`torch.FloatTensor`):
|
| 127 |
+
The input sample.
|
| 128 |
+
timestep (`float` or `torch.FloatTensor`):
|
| 129 |
+
The current timestep in the diffusion chain.
|
| 130 |
+
|
| 131 |
+
Returns:
|
| 132 |
+
`torch.FloatTensor`:
|
| 133 |
+
A scaled input sample.
|
| 134 |
+
"""
|
| 135 |
+
# Get sigma corresponding to timestep
|
| 136 |
+
if self.step_index is None:
|
| 137 |
+
self._init_step_index(timestep)
|
| 138 |
+
|
| 139 |
+
sigma = self.sigmas[self.step_index]
|
| 140 |
+
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
| 141 |
+
|
| 142 |
+
self.is_scale_input_called = True
|
| 143 |
+
return sample
|
| 144 |
+
|
| 145 |
+
# def _sigma_to_t(self, sigma, log_sigmas):
|
| 146 |
+
# # get log sigma
|
| 147 |
+
# log_sigma = np.log(np.maximum(sigma, 1e-10))
|
| 148 |
+
|
| 149 |
+
# # get distribution
|
| 150 |
+
# dists = log_sigma - log_sigmas[:, np.newaxis]
|
| 151 |
+
|
| 152 |
+
# # get sigmas range
|
| 153 |
+
# low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
| 154 |
+
# high_idx = low_idx + 1
|
| 155 |
+
|
| 156 |
+
# low = log_sigmas[low_idx]
|
| 157 |
+
# high = log_sigmas[high_idx]
|
| 158 |
+
|
| 159 |
+
# # interpolate sigmas
|
| 160 |
+
# w = (low - log_sigma) / (low - high)
|
| 161 |
+
# w = np.clip(w, 0, 1)
|
| 162 |
+
|
| 163 |
+
# # transform interpolation to time range
|
| 164 |
+
# t = (1 - w) * low_idx + w * high_idx
|
| 165 |
+
# t = t.reshape(sigma.shape)
|
| 166 |
+
# return t
|
| 167 |
+
|
| 168 |
+
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
|
| 169 |
+
"""
|
| 170 |
+
Gets scaled timesteps from the Karras sigmas for input to the consistency model.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
sigmas (`float` or `np.ndarray`):
|
| 174 |
+
A single Karras sigma or an array of Karras sigmas.
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
`float` or `np.ndarray`:
|
| 178 |
+
A scaled input timestep or scaled input timestep array.
|
| 179 |
+
"""
|
| 180 |
+
if not isinstance(sigmas, np.ndarray):
|
| 181 |
+
sigmas = np.array(sigmas, dtype=np.float64)
|
| 182 |
+
|
| 183 |
+
timesteps = 0.25 * np.log(sigmas + 1e-44)
|
| 184 |
+
|
| 185 |
+
return timesteps
|
| 186 |
+
|
| 187 |
+
def set_timesteps(
|
| 188 |
+
self,
|
| 189 |
+
num_inference_steps: Optional[int] = None,
|
| 190 |
+
device: Union[str, torch.device] = None,
|
| 191 |
+
timesteps: Optional[List[int]] = None,
|
| 192 |
+
):
|
| 193 |
+
"""
|
| 194 |
+
Sets the timesteps used for the diffusion chain (to be run before inference).
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
num_inference_steps (`int`):
|
| 198 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 199 |
+
device (`str` or `torch.device`, *optional*):
|
| 200 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 201 |
+
timesteps (`List[int]`, *optional*):
|
| 202 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
| 203 |
+
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
|
| 204 |
+
`num_inference_steps` must be `None`.
|
| 205 |
+
"""
|
| 206 |
+
if num_inference_steps is None and timesteps is None:
|
| 207 |
+
raise ValueError(
|
| 208 |
+
"Exactly one of `num_inference_steps` or `timesteps` must be supplied."
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if num_inference_steps is not None and timesteps is not None:
|
| 212 |
+
raise ValueError(
|
| 213 |
+
"Can only pass one of `num_inference_steps` or `timesteps`."
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Follow DDPMScheduler custom timesteps logic
|
| 217 |
+
if timesteps is not None:
|
| 218 |
+
for i in range(1, len(timesteps)):
|
| 219 |
+
if timesteps[i] >= timesteps[i - 1]:
|
| 220 |
+
raise ValueError("`timesteps` must be in descending order.")
|
| 221 |
+
|
| 222 |
+
if timesteps[0] >= self.config.num_train_timesteps:
|
| 223 |
+
raise ValueError(
|
| 224 |
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
| 225 |
+
f" {self.config.num_train_timesteps}."
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
timesteps = np.array(timesteps, dtype=np.int64)
|
| 229 |
+
self.custom_timesteps = True
|
| 230 |
+
else:
|
| 231 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
| 232 |
+
raise ValueError(
|
| 233 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
| 234 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
| 235 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
self.num_inference_steps = num_inference_steps
|
| 239 |
+
|
| 240 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
| 241 |
+
timesteps = (
|
| 242 |
+
(np.arange(0, num_inference_steps) * step_ratio)
|
| 243 |
+
.round()[::-1]
|
| 244 |
+
.copy()
|
| 245 |
+
.astype(np.int64)
|
| 246 |
+
)
|
| 247 |
+
self.custom_timesteps = False
|
| 248 |
+
|
| 249 |
+
# Map timesteps to Karras sigmas directly for multistep sampling
|
| 250 |
+
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
|
| 251 |
+
num_train_timesteps = self.config.num_train_timesteps
|
| 252 |
+
ramp = timesteps[::-1].copy()
|
| 253 |
+
ramp = ramp / (num_train_timesteps - 1)
|
| 254 |
+
sigmas = self._convert_to_karras(ramp)
|
| 255 |
+
timesteps = self.sigma_to_t(sigmas)
|
| 256 |
+
|
| 257 |
+
sigmas = np.concatenate([sigmas, [0]]).astype(np.float32)
|
| 258 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
| 259 |
+
|
| 260 |
+
if str(device).startswith("mps"):
|
| 261 |
+
# mps does not support float64
|
| 262 |
+
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
|
| 263 |
+
else:
|
| 264 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
| 265 |
+
|
| 266 |
+
self._step_index = None
|
| 267 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
| 268 |
+
|
| 269 |
+
# Modified _convert_to_karras implementation that takes in ramp as argument
|
| 270 |
+
def _convert_to_karras(self, ramp):
|
| 271 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
| 272 |
+
|
| 273 |
+
sigma_min: float = self.config.sigma_min
|
| 274 |
+
sigma_max: float = self.config.sigma_max
|
| 275 |
+
|
| 276 |
+
rho = self.config.rho
|
| 277 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
| 278 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
| 279 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
| 280 |
+
return sigmas
|
| 281 |
+
|
| 282 |
+
def get_scalings(self, sigma):
|
| 283 |
+
sigma_data = self.config.sigma_data
|
| 284 |
+
|
| 285 |
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
| 286 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
| 287 |
+
return c_skip, c_out
|
| 288 |
+
|
| 289 |
+
def get_scalings_for_boundary_condition(self, sigma):
|
| 290 |
+
"""
|
| 291 |
+
Gets the scalings used in the consistency model parameterization (from Appendix C of the
|
| 292 |
+
[paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
|
| 293 |
+
|
| 294 |
+
<Tip>
|
| 295 |
+
|
| 296 |
+
`epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.
|
| 297 |
+
|
| 298 |
+
</Tip>
|
| 299 |
+
|
| 300 |
+
Args:
|
| 301 |
+
sigma (`torch.FloatTensor`):
|
| 302 |
+
The current sigma in the Karras sigma schedule.
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
`tuple`:
|
| 306 |
+
A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
|
| 307 |
+
(which weights the consistency model output) is the second element.
|
| 308 |
+
"""
|
| 309 |
+
sigma_min = self.config.sigma_min
|
| 310 |
+
sigma_data = self.config.sigma_data
|
| 311 |
+
|
| 312 |
+
c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2)
|
| 313 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
| 314 |
+
return c_skip, c_out
|
| 315 |
+
|
| 316 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
| 317 |
+
def _init_step_index(self, timestep):
|
| 318 |
+
if isinstance(timestep, torch.Tensor):
|
| 319 |
+
timestep = timestep.to(self.timesteps.device)
|
| 320 |
+
|
| 321 |
+
index_candidates = (self.timesteps == timestep).nonzero()
|
| 322 |
+
|
| 323 |
+
# The sigma index that is taken for the **very** first `step`
|
| 324 |
+
# is always the second index (or the last index if there is only 1)
|
| 325 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
| 326 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
| 327 |
+
if len(index_candidates) > 1:
|
| 328 |
+
step_index = index_candidates[1]
|
| 329 |
+
else:
|
| 330 |
+
step_index = index_candidates[0]
|
| 331 |
+
|
| 332 |
+
self._step_index = step_index.item()
|
| 333 |
+
|
| 334 |
+
def step(
|
| 335 |
+
self,
|
| 336 |
+
model_output: torch.FloatTensor,
|
| 337 |
+
timestep: Union[float, torch.FloatTensor],
|
| 338 |
+
sample: torch.FloatTensor,
|
| 339 |
+
generator: Optional[torch.Generator] = None,
|
| 340 |
+
return_dict: bool = True,
|
| 341 |
+
) -> Union[AnimateLCMSVDStochasticIterativeSchedulerOutput, Tuple]:
|
| 342 |
+
"""
|
| 343 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
| 344 |
+
process from the learned model outputs (most often the predicted noise).
|
| 345 |
+
|
| 346 |
+
Args:
|
| 347 |
+
model_output (`torch.FloatTensor`):
|
| 348 |
+
The direct output from the learned diffusion model.
|
| 349 |
+
timestep (`float`):
|
| 350 |
+
The current timestep in the diffusion chain.
|
| 351 |
+
sample (`torch.FloatTensor`):
|
| 352 |
+
A current instance of a sample created by the diffusion process.
|
| 353 |
+
generator (`torch.Generator`, *optional*):
|
| 354 |
+
A random number generator.
|
| 355 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 356 |
+
Whether or not to return a
|
| 357 |
+
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`.
|
| 358 |
+
|
| 359 |
+
Returns:
|
| 360 |
+
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`:
|
| 361 |
+
If return_dict is `True`,
|
| 362 |
+
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] is returned,
|
| 363 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
| 364 |
+
"""
|
| 365 |
+
|
| 366 |
+
if (
|
| 367 |
+
isinstance(timestep, int)
|
| 368 |
+
or isinstance(timestep, torch.IntTensor)
|
| 369 |
+
or isinstance(timestep, torch.LongTensor)
|
| 370 |
+
):
|
| 371 |
+
raise ValueError(
|
| 372 |
+
(
|
| 373 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
| 374 |
+
f" `{self.__class__}.step()` is not supported. Make sure to pass"
|
| 375 |
+
" one of the `scheduler.timesteps` as a timestep."
|
| 376 |
+
),
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
if not self.is_scale_input_called:
|
| 380 |
+
logger.warning(
|
| 381 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
| 382 |
+
"See `StableDiffusionPipeline` for a usage example."
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
sigma_min = self.config.sigma_min
|
| 386 |
+
sigma_max = self.config.sigma_max
|
| 387 |
+
|
| 388 |
+
if self.step_index is None:
|
| 389 |
+
self._init_step_index(timestep)
|
| 390 |
+
|
| 391 |
+
# sigma_next corresponds to next_t in original implementation
|
| 392 |
+
sigma = self.sigmas[self.step_index]
|
| 393 |
+
if self.step_index + 1 < self.config.num_train_timesteps:
|
| 394 |
+
sigma_next = self.sigmas[self.step_index + 1]
|
| 395 |
+
else:
|
| 396 |
+
# Set sigma_next to sigma_min
|
| 397 |
+
sigma_next = self.sigmas[-1]
|
| 398 |
+
|
| 399 |
+
# Get scalings for boundary conditions
|
| 400 |
+
|
| 401 |
+
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
|
| 402 |
+
|
| 403 |
+
# 1. Denoise model output using boundary conditions
|
| 404 |
+
denoised = c_out * model_output + c_skip * sample
|
| 405 |
+
if self.config.clip_denoised:
|
| 406 |
+
denoised = denoised.clamp(-1, 1)
|
| 407 |
+
|
| 408 |
+
# 2. Sample z ~ N(0, s_noise^2 * I)
|
| 409 |
+
# Noise is not used for onestep sampling.
|
| 410 |
+
if len(self.timesteps) > 1:
|
| 411 |
+
noise = randn_tensor(
|
| 412 |
+
model_output.shape,
|
| 413 |
+
dtype=model_output.dtype,
|
| 414 |
+
device=model_output.device,
|
| 415 |
+
generator=generator,
|
| 416 |
+
)
|
| 417 |
+
else:
|
| 418 |
+
noise = torch.zeros_like(model_output)
|
| 419 |
+
z = noise * self.config.s_noise
|
| 420 |
+
|
| 421 |
+
sigma_hat = sigma_next.clamp(min=0, max=sigma_max)
|
| 422 |
+
|
| 423 |
+
print("denoise currently")
|
| 424 |
+
print(sigma_hat)
|
| 425 |
+
|
| 426 |
+
# origin
|
| 427 |
+
prev_sample = denoised + z * sigma_hat
|
| 428 |
+
|
| 429 |
+
# upon completion increase step index by one
|
| 430 |
+
self._step_index += 1
|
| 431 |
+
|
| 432 |
+
if not return_dict:
|
| 433 |
+
return (prev_sample,)
|
| 434 |
+
|
| 435 |
+
return AnimateLCMSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
|
| 436 |
+
|
| 437 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
| 438 |
+
def add_noise(
|
| 439 |
+
self,
|
| 440 |
+
original_samples: torch.FloatTensor,
|
| 441 |
+
noise: torch.FloatTensor,
|
| 442 |
+
timesteps: torch.FloatTensor,
|
| 443 |
+
) -> torch.FloatTensor:
|
| 444 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
| 445 |
+
sigmas = self.sigmas.to(
|
| 446 |
+
device=original_samples.device, dtype=original_samples.dtype
|
| 447 |
+
)
|
| 448 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
| 449 |
+
# mps does not support float64
|
| 450 |
+
schedule_timesteps = self.timesteps.to(
|
| 451 |
+
original_samples.device, dtype=torch.float32
|
| 452 |
+
)
|
| 453 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
| 454 |
+
else:
|
| 455 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
| 456 |
+
timesteps = timesteps.to(original_samples.device)
|
| 457 |
+
|
| 458 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
| 459 |
+
|
| 460 |
+
sigma = sigmas[step_indices].flatten()
|
| 461 |
+
while len(sigma.shape) < len(original_samples.shape):
|
| 462 |
+
sigma = sigma.unsqueeze(-1)
|
| 463 |
+
|
| 464 |
+
noisy_samples = original_samples + noise * sigma
|
| 465 |
+
return noisy_samples
|
| 466 |
+
|
| 467 |
+
def __len__(self):
|
| 468 |
+
return self.config.num_train_timesteps
|
outputs_gradio/000000.mp4
ADDED
|
Binary file (641 kB). View file
|
|
|
outputs_gradio/000001.mp4
ADDED
|
Binary file (848 kB). View file
|
|
|
outputs_gradio/000002.mp4
ADDED
|
Binary file (393 kB). View file
|
|
|
outputs_gradio/000003.mp4
ADDED
|
Binary file (734 kB). View file
|
|
|
outputs_gradio/000004.mp4
ADDED
|
Binary file (498 kB). View file
|
|
|
outputs_gradio/000005.mp4
ADDED
|
Binary file (373 kB). View file
|
|
|
pipeline.py
ADDED
|
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from typing import Callable, Dict, List, Optional, Union
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
import PIL.Image
|
| 21 |
+
import torch
|
| 22 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
| 23 |
+
|
| 24 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 25 |
+
from diffusers.models import (
|
| 26 |
+
AutoencoderKLTemporalDecoder,
|
| 27 |
+
UNetSpatioTemporalConditionModel,
|
| 28 |
+
)
|
| 29 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
| 30 |
+
from diffusers.utils import BaseOutput, logging
|
| 31 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
| 32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def _append_dims(x, target_dims):
|
| 39 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
| 40 |
+
dims_to_append = target_dims - x.ndim
|
| 41 |
+
if dims_to_append < 0:
|
| 42 |
+
raise ValueError(
|
| 43 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
| 44 |
+
)
|
| 45 |
+
return x[(...,) + (None,) * dims_to_append]
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
| 49 |
+
# Based on:
|
| 50 |
+
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
| 51 |
+
|
| 52 |
+
batch_size, channels, num_frames, height, width = video.shape
|
| 53 |
+
outputs = []
|
| 54 |
+
for batch_idx in range(batch_size):
|
| 55 |
+
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
| 56 |
+
batch_output = processor.postprocess(batch_vid, output_type)
|
| 57 |
+
|
| 58 |
+
outputs.append(batch_output)
|
| 59 |
+
|
| 60 |
+
return outputs
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@dataclass
|
| 64 |
+
class StableVideoDiffusionPipelineOutput(BaseOutput):
|
| 65 |
+
r"""
|
| 66 |
+
Output class for zero-shot text-to-video pipeline.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
|
| 70 |
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
| 71 |
+
num_channels)`.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
frames: Union[List[PIL.Image.Image], np.ndarray]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class StableVideoDiffusionPipeline(DiffusionPipeline):
|
| 78 |
+
r"""
|
| 79 |
+
Pipeline to generate video from an input image using Stable Video Diffusion.
|
| 80 |
+
|
| 81 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 82 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
vae ([`AutoencoderKL`]):
|
| 86 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
| 87 |
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
| 88 |
+
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
|
| 89 |
+
unet ([`UNetSpatioTemporalConditionModel`]):
|
| 90 |
+
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
|
| 91 |
+
scheduler ([`EulerDiscreteScheduler`]):
|
| 92 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
| 93 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
| 94 |
+
A `CLIPImageProcessor` to extract features from generated images.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
| 98 |
+
_callback_tensor_inputs = ["latents"]
|
| 99 |
+
|
| 100 |
+
def __init__(
|
| 101 |
+
self,
|
| 102 |
+
vae: AutoencoderKLTemporalDecoder,
|
| 103 |
+
image_encoder: CLIPVisionModelWithProjection,
|
| 104 |
+
unet: UNetSpatioTemporalConditionModel,
|
| 105 |
+
scheduler: EulerDiscreteScheduler,
|
| 106 |
+
feature_extractor: CLIPImageProcessor,
|
| 107 |
+
):
|
| 108 |
+
super().__init__()
|
| 109 |
+
|
| 110 |
+
self.register_modules(
|
| 111 |
+
vae=vae,
|
| 112 |
+
image_encoder=image_encoder,
|
| 113 |
+
unet=unet,
|
| 114 |
+
scheduler=scheduler,
|
| 115 |
+
feature_extractor=feature_extractor,
|
| 116 |
+
)
|
| 117 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 118 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 119 |
+
|
| 120 |
+
def _encode_image(
|
| 121 |
+
self, image, device, num_videos_per_prompt, do_classifier_free_guidance
|
| 122 |
+
):
|
| 123 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 124 |
+
|
| 125 |
+
if not isinstance(image, torch.Tensor):
|
| 126 |
+
image = self.image_processor.pil_to_numpy(image)
|
| 127 |
+
image = self.image_processor.numpy_to_pt(image)
|
| 128 |
+
|
| 129 |
+
# We normalize the image before resizing to match with the original implementation.
|
| 130 |
+
# Then we unnormalize it after resizing.
|
| 131 |
+
image = image * 2.0 - 1.0
|
| 132 |
+
image = _resize_with_antialiasing(image, (224, 224))
|
| 133 |
+
image = (image + 1.0) / 2.0
|
| 134 |
+
|
| 135 |
+
# Normalize the image with for CLIP input
|
| 136 |
+
image = self.feature_extractor(
|
| 137 |
+
images=image,
|
| 138 |
+
do_normalize=True,
|
| 139 |
+
do_center_crop=False,
|
| 140 |
+
do_resize=False,
|
| 141 |
+
do_rescale=False,
|
| 142 |
+
return_tensors="pt",
|
| 143 |
+
).pixel_values
|
| 144 |
+
|
| 145 |
+
image = image.to(device=device, dtype=dtype)
|
| 146 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
| 147 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
| 148 |
+
|
| 149 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
| 150 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
| 151 |
+
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
|
| 152 |
+
image_embeddings = image_embeddings.view(
|
| 153 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if do_classifier_free_guidance:
|
| 157 |
+
negative_image_embeddings = torch.zeros_like(image_embeddings)
|
| 158 |
+
|
| 159 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 160 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 161 |
+
# to avoid doing two forward passes
|
| 162 |
+
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
|
| 163 |
+
|
| 164 |
+
return image_embeddings
|
| 165 |
+
|
| 166 |
+
def _encode_vae_image(
|
| 167 |
+
self,
|
| 168 |
+
image: torch.Tensor,
|
| 169 |
+
device,
|
| 170 |
+
num_videos_per_prompt,
|
| 171 |
+
do_classifier_free_guidance,
|
| 172 |
+
):
|
| 173 |
+
image = image.to(device=device)
|
| 174 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
| 175 |
+
|
| 176 |
+
if do_classifier_free_guidance:
|
| 177 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
| 178 |
+
|
| 179 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 180 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 181 |
+
# to avoid doing two forward passes
|
| 182 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
| 183 |
+
|
| 184 |
+
# duplicate image_latents for each generation per prompt, using mps friendly method
|
| 185 |
+
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
|
| 186 |
+
|
| 187 |
+
return image_latents
|
| 188 |
+
|
| 189 |
+
def _get_add_time_ids(
|
| 190 |
+
self,
|
| 191 |
+
fps,
|
| 192 |
+
motion_bucket_id,
|
| 193 |
+
noise_aug_strength,
|
| 194 |
+
dtype,
|
| 195 |
+
batch_size,
|
| 196 |
+
num_videos_per_prompt,
|
| 197 |
+
do_classifier_free_guidance,
|
| 198 |
+
):
|
| 199 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
| 200 |
+
|
| 201 |
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(
|
| 202 |
+
add_time_ids
|
| 203 |
+
)
|
| 204 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
| 205 |
+
|
| 206 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
| 207 |
+
raise ValueError(
|
| 208 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 212 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
|
| 213 |
+
|
| 214 |
+
if do_classifier_free_guidance:
|
| 215 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
| 216 |
+
|
| 217 |
+
return add_time_ids
|
| 218 |
+
|
| 219 |
+
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
|
| 220 |
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
| 221 |
+
latents = latents.flatten(0, 1)
|
| 222 |
+
|
| 223 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 224 |
+
|
| 225 |
+
forward_vae_fn = (
|
| 226 |
+
self.vae._orig_mod.forward
|
| 227 |
+
if is_compiled_module(self.vae)
|
| 228 |
+
else self.vae.forward
|
| 229 |
+
)
|
| 230 |
+
accepts_num_frames = "num_frames" in set(
|
| 231 |
+
inspect.signature(forward_vae_fn).parameters.keys()
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# decode decode_chunk_size frames at a time to avoid OOM
|
| 235 |
+
frames = []
|
| 236 |
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
| 237 |
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
| 238 |
+
decode_kwargs = {}
|
| 239 |
+
if accepts_num_frames:
|
| 240 |
+
# we only pass num_frames_in if it's expected
|
| 241 |
+
decode_kwargs["num_frames"] = num_frames_in
|
| 242 |
+
|
| 243 |
+
frame = self.vae.decode(
|
| 244 |
+
latents[i : i + decode_chunk_size], **decode_kwargs
|
| 245 |
+
).sample
|
| 246 |
+
frames.append(frame)
|
| 247 |
+
frames = torch.cat(frames, dim=0)
|
| 248 |
+
|
| 249 |
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
| 250 |
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(
|
| 251 |
+
0, 2, 1, 3, 4
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 255 |
+
frames = frames.float()
|
| 256 |
+
return frames
|
| 257 |
+
|
| 258 |
+
def check_inputs(self, image, height, width):
|
| 259 |
+
if (
|
| 260 |
+
not isinstance(image, torch.Tensor)
|
| 261 |
+
and not isinstance(image, PIL.Image.Image)
|
| 262 |
+
and not isinstance(image, list)
|
| 263 |
+
):
|
| 264 |
+
raise ValueError(
|
| 265 |
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
| 266 |
+
f" {type(image)}"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 270 |
+
raise ValueError(
|
| 271 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
def prepare_latents(
|
| 275 |
+
self,
|
| 276 |
+
batch_size,
|
| 277 |
+
num_frames,
|
| 278 |
+
num_channels_latents,
|
| 279 |
+
height,
|
| 280 |
+
width,
|
| 281 |
+
dtype,
|
| 282 |
+
device,
|
| 283 |
+
generator,
|
| 284 |
+
latents=None,
|
| 285 |
+
):
|
| 286 |
+
shape = (
|
| 287 |
+
batch_size,
|
| 288 |
+
num_frames,
|
| 289 |
+
num_channels_latents // 2,
|
| 290 |
+
height // self.vae_scale_factor,
|
| 291 |
+
width // self.vae_scale_factor,
|
| 292 |
+
)
|
| 293 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 294 |
+
raise ValueError(
|
| 295 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 296 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
if latents is None:
|
| 300 |
+
latents = randn_tensor(
|
| 301 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 302 |
+
)
|
| 303 |
+
else:
|
| 304 |
+
latents = latents.to(device)
|
| 305 |
+
|
| 306 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 307 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 308 |
+
return latents
|
| 309 |
+
|
| 310 |
+
@property
|
| 311 |
+
def guidance_scale(self):
|
| 312 |
+
return self._guidance_scale
|
| 313 |
+
|
| 314 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 315 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 316 |
+
# corresponds to doing no classifier free guidance.
|
| 317 |
+
@property
|
| 318 |
+
def do_classifier_free_guidance(self):
|
| 319 |
+
if isinstance(self.guidance_scale, (int, float)):
|
| 320 |
+
return self.guidance_scale > 1
|
| 321 |
+
return self.guidance_scale.max() > 1
|
| 322 |
+
|
| 323 |
+
@property
|
| 324 |
+
def num_timesteps(self):
|
| 325 |
+
return self._num_timesteps
|
| 326 |
+
|
| 327 |
+
@torch.no_grad()
|
| 328 |
+
def __call__(
|
| 329 |
+
self,
|
| 330 |
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
|
| 331 |
+
height: int = 576,
|
| 332 |
+
width: int = 1024,
|
| 333 |
+
num_frames: Optional[int] = None,
|
| 334 |
+
num_inference_steps: int = 25,
|
| 335 |
+
min_guidance_scale: float = 1.0,
|
| 336 |
+
max_guidance_scale: float = 3.0,
|
| 337 |
+
fps: int = 7,
|
| 338 |
+
motion_bucket_id: int = 127,
|
| 339 |
+
noise_aug_strength: int = 0.02,
|
| 340 |
+
decode_chunk_size: Optional[int] = None,
|
| 341 |
+
num_videos_per_prompt: Optional[int] = 1,
|
| 342 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 343 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 344 |
+
output_type: Optional[str] = "pil",
|
| 345 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 346 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 347 |
+
return_dict: bool = True,
|
| 348 |
+
):
|
| 349 |
+
r"""
|
| 350 |
+
The call function to the pipeline for generation.
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
| 354 |
+
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
|
| 355 |
+
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
|
| 356 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 357 |
+
The height in pixels of the generated image.
|
| 358 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 359 |
+
The width in pixels of the generated image.
|
| 360 |
+
num_frames (`int`, *optional*):
|
| 361 |
+
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
|
| 362 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
| 363 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 364 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
| 365 |
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
| 366 |
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
| 367 |
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
| 368 |
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
| 369 |
+
fps (`int`, *optional*, defaults to 7):
|
| 370 |
+
Frames per second. The rate at which the generated images shall be exported to a video after generation.
|
| 371 |
+
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
| 372 |
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
| 373 |
+
The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.
|
| 374 |
+
noise_aug_strength (`int`, *optional*, defaults to 0.02):
|
| 375 |
+
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
|
| 376 |
+
decode_chunk_size (`int`, *optional*):
|
| 377 |
+
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
|
| 378 |
+
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
|
| 379 |
+
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
|
| 380 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
| 381 |
+
The number of images to generate per prompt.
|
| 382 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 383 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 384 |
+
generation deterministic.
|
| 385 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 386 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 387 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 388 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 389 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 390 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 391 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 392 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 393 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 394 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 395 |
+
`callback_on_step_end_tensor_inputs`.
|
| 396 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 397 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 398 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 399 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 400 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 401 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 402 |
+
plain tuple.
|
| 403 |
+
|
| 404 |
+
Returns:
|
| 405 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
|
| 406 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
|
| 407 |
+
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
|
| 408 |
+
|
| 409 |
+
Examples:
|
| 410 |
+
|
| 411 |
+
```py
|
| 412 |
+
from diffusers import StableVideoDiffusionPipeline
|
| 413 |
+
from diffusers.utils import load_image, export_to_video
|
| 414 |
+
|
| 415 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
|
| 416 |
+
pipe.to("cuda")
|
| 417 |
+
|
| 418 |
+
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
|
| 419 |
+
image = image.resize((1024, 576))
|
| 420 |
+
|
| 421 |
+
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
|
| 422 |
+
export_to_video(frames, "generated.mp4", fps=7)
|
| 423 |
+
```
|
| 424 |
+
"""
|
| 425 |
+
# 0. Default height and width to unet
|
| 426 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 427 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 428 |
+
|
| 429 |
+
num_frames = (
|
| 430 |
+
num_frames if num_frames is not None else self.unet.config.num_frames
|
| 431 |
+
)
|
| 432 |
+
decode_chunk_size = (
|
| 433 |
+
decode_chunk_size if decode_chunk_size is not None else num_frames
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# 1. Check inputs. Raise error if not correct
|
| 437 |
+
self.check_inputs(image, height, width)
|
| 438 |
+
|
| 439 |
+
# 2. Define call parameters
|
| 440 |
+
if isinstance(image, PIL.Image.Image):
|
| 441 |
+
batch_size = 1
|
| 442 |
+
elif isinstance(image, list):
|
| 443 |
+
batch_size = len(image)
|
| 444 |
+
else:
|
| 445 |
+
batch_size = image.shape[0]
|
| 446 |
+
device = self._execution_device
|
| 447 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 448 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 449 |
+
# corresponds to doing no classifier free guidance.
|
| 450 |
+
self._guidance_scale = max_guidance_scale
|
| 451 |
+
|
| 452 |
+
# 3. Encode input image
|
| 453 |
+
image_embeddings = self._encode_image(
|
| 454 |
+
image, device, num_videos_per_prompt, self.do_classifier_free_guidance
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
|
| 458 |
+
# is why it is reduced here.
|
| 459 |
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
| 460 |
+
fps = fps - 1
|
| 461 |
+
|
| 462 |
+
# 4. Encode input image using VAE
|
| 463 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
| 464 |
+
noise = randn_tensor(
|
| 465 |
+
image.shape, generator=generator, device=image.device, dtype=image.dtype
|
| 466 |
+
)
|
| 467 |
+
image = image + noise_aug_strength * noise
|
| 468 |
+
|
| 469 |
+
needs_upcasting = (
|
| 470 |
+
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 471 |
+
)
|
| 472 |
+
if needs_upcasting:
|
| 473 |
+
self.vae.to(dtype=torch.float32)
|
| 474 |
+
|
| 475 |
+
image_latents = self._encode_vae_image(
|
| 476 |
+
image, device, num_videos_per_prompt, self.do_classifier_free_guidance
|
| 477 |
+
)
|
| 478 |
+
image_latents = image_latents.to(image_embeddings.dtype)
|
| 479 |
+
|
| 480 |
+
# cast back to fp16 if needed
|
| 481 |
+
if needs_upcasting:
|
| 482 |
+
self.vae.to(dtype=torch.float16)
|
| 483 |
+
|
| 484 |
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
| 485 |
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
| 486 |
+
image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
| 487 |
+
|
| 488 |
+
# 5. Get Added Time IDs
|
| 489 |
+
added_time_ids = self._get_add_time_ids(
|
| 490 |
+
fps,
|
| 491 |
+
motion_bucket_id,
|
| 492 |
+
noise_aug_strength,
|
| 493 |
+
image_embeddings.dtype,
|
| 494 |
+
batch_size,
|
| 495 |
+
num_videos_per_prompt,
|
| 496 |
+
self.do_classifier_free_guidance,
|
| 497 |
+
)
|
| 498 |
+
added_time_ids = added_time_ids.to(device)
|
| 499 |
+
|
| 500 |
+
# 4. Prepare timesteps
|
| 501 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 502 |
+
print("converted after karras", self.scheduler.sigmas)
|
| 503 |
+
timesteps = self.scheduler.timesteps
|
| 504 |
+
|
| 505 |
+
# 5. Prepare latent variables
|
| 506 |
+
num_channels_latents = self.unet.config.in_channels
|
| 507 |
+
latents = self.prepare_latents(
|
| 508 |
+
batch_size * num_videos_per_prompt,
|
| 509 |
+
num_frames,
|
| 510 |
+
num_channels_latents,
|
| 511 |
+
height,
|
| 512 |
+
width,
|
| 513 |
+
image_embeddings.dtype,
|
| 514 |
+
device,
|
| 515 |
+
generator,
|
| 516 |
+
latents,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# 7. Prepare guidance scale
|
| 520 |
+
guidance_scale = torch.linspace(
|
| 521 |
+
min_guidance_scale, max_guidance_scale, num_frames
|
| 522 |
+
).unsqueeze(0)
|
| 523 |
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
| 524 |
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
| 525 |
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
| 526 |
+
|
| 527 |
+
self._guidance_scale = guidance_scale
|
| 528 |
+
|
| 529 |
+
# 8. Denoising loop
|
| 530 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 531 |
+
self._num_timesteps = len(timesteps)
|
| 532 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 533 |
+
for i, t in enumerate(timesteps):
|
| 534 |
+
# expand the latents if we are doing classifier free guidance
|
| 535 |
+
latent_model_input = (
|
| 536 |
+
torch.cat([latents] * 2)
|
| 537 |
+
if self.do_classifier_free_guidance
|
| 538 |
+
else latents
|
| 539 |
+
)
|
| 540 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 541 |
+
latent_model_input, t
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
# Concatenate image_latents over channels dimention
|
| 545 |
+
latent_model_input = torch.cat(
|
| 546 |
+
[latent_model_input, image_latents], dim=2
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
# predict the noise residual
|
| 550 |
+
noise_pred = self.unet(
|
| 551 |
+
latent_model_input,
|
| 552 |
+
t,
|
| 553 |
+
encoder_hidden_states=image_embeddings,
|
| 554 |
+
added_time_ids=added_time_ids,
|
| 555 |
+
return_dict=False,
|
| 556 |
+
)[0]
|
| 557 |
+
|
| 558 |
+
# perform guidance
|
| 559 |
+
if self.do_classifier_free_guidance:
|
| 560 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
| 561 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
| 562 |
+
noise_pred_cond - noise_pred_uncond
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 566 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
| 567 |
+
|
| 568 |
+
if callback_on_step_end is not None:
|
| 569 |
+
callback_kwargs = {}
|
| 570 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 571 |
+
callback_kwargs[k] = locals()[k]
|
| 572 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 573 |
+
|
| 574 |
+
latents = callback_outputs.pop("latents", latents)
|
| 575 |
+
|
| 576 |
+
if i == len(timesteps) - 1 or (
|
| 577 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 578 |
+
):
|
| 579 |
+
progress_bar.update()
|
| 580 |
+
|
| 581 |
+
if not output_type == "latent":
|
| 582 |
+
# cast back to fp16 if needed
|
| 583 |
+
if needs_upcasting:
|
| 584 |
+
self.vae.to(dtype=torch.float16)
|
| 585 |
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
| 586 |
+
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
|
| 587 |
+
else:
|
| 588 |
+
frames = latents
|
| 589 |
+
|
| 590 |
+
self.maybe_free_model_hooks()
|
| 591 |
+
|
| 592 |
+
if not return_dict:
|
| 593 |
+
return frames
|
| 594 |
+
|
| 595 |
+
return StableVideoDiffusionPipelineOutput(frames=frames)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
# resizing utils
|
| 599 |
+
# TODO: clean up later
|
| 600 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
| 601 |
+
h, w = input.shape[-2:]
|
| 602 |
+
factors = (h / size[0], w / size[1])
|
| 603 |
+
|
| 604 |
+
# First, we have to determine sigma
|
| 605 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
| 606 |
+
sigmas = (
|
| 607 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
| 608 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
| 612 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
| 613 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
| 614 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
| 615 |
+
|
| 616 |
+
# Make sure it is odd
|
| 617 |
+
if (ks[0] % 2) == 0:
|
| 618 |
+
ks = ks[0] + 1, ks[1]
|
| 619 |
+
|
| 620 |
+
if (ks[1] % 2) == 0:
|
| 621 |
+
ks = ks[0], ks[1] + 1
|
| 622 |
+
|
| 623 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
| 624 |
+
|
| 625 |
+
output = torch.nn.functional.interpolate(
|
| 626 |
+
input, size=size, mode=interpolation, align_corners=align_corners
|
| 627 |
+
)
|
| 628 |
+
return output
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
def _compute_padding(kernel_size):
|
| 632 |
+
"""Compute padding tuple."""
|
| 633 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
| 634 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
| 635 |
+
if len(kernel_size) < 2:
|
| 636 |
+
raise AssertionError(kernel_size)
|
| 637 |
+
computed = [k - 1 for k in kernel_size]
|
| 638 |
+
|
| 639 |
+
# for even kernels we need to do asymmetric padding :(
|
| 640 |
+
out_padding = 2 * len(kernel_size) * [0]
|
| 641 |
+
|
| 642 |
+
for i in range(len(kernel_size)):
|
| 643 |
+
computed_tmp = computed[-(i + 1)]
|
| 644 |
+
|
| 645 |
+
pad_front = computed_tmp // 2
|
| 646 |
+
pad_rear = computed_tmp - pad_front
|
| 647 |
+
|
| 648 |
+
out_padding[2 * i + 0] = pad_front
|
| 649 |
+
out_padding[2 * i + 1] = pad_rear
|
| 650 |
+
|
| 651 |
+
return out_padding
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
def _filter2d(input, kernel):
|
| 655 |
+
# prepare kernel
|
| 656 |
+
b, c, h, w = input.shape
|
| 657 |
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
| 658 |
+
|
| 659 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
| 660 |
+
|
| 661 |
+
height, width = tmp_kernel.shape[-2:]
|
| 662 |
+
|
| 663 |
+
padding_shape: list[int] = _compute_padding([height, width])
|
| 664 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
| 665 |
+
|
| 666 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
| 667 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
| 668 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
| 669 |
+
|
| 670 |
+
# convolve the tensor with the kernel.
|
| 671 |
+
output = torch.nn.functional.conv2d(
|
| 672 |
+
input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
out = output.view(b, c, h, w)
|
| 676 |
+
return out
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
def _gaussian(window_size: int, sigma):
|
| 680 |
+
if isinstance(sigma, float):
|
| 681 |
+
sigma = torch.tensor([[sigma]])
|
| 682 |
+
|
| 683 |
+
batch_size = sigma.shape[0]
|
| 684 |
+
|
| 685 |
+
x = (
|
| 686 |
+
torch.arange(window_size, device=sigma.device, dtype=sigma.dtype)
|
| 687 |
+
- window_size // 2
|
| 688 |
+
).expand(batch_size, -1)
|
| 689 |
+
|
| 690 |
+
if window_size % 2 == 0:
|
| 691 |
+
x = x + 0.5
|
| 692 |
+
|
| 693 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
| 694 |
+
|
| 695 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
| 699 |
+
if isinstance(sigma, tuple):
|
| 700 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
| 701 |
+
else:
|
| 702 |
+
sigma = sigma.to(dtype=input.dtype)
|
| 703 |
+
|
| 704 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
| 705 |
+
bs = sigma.shape[0]
|
| 706 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
| 707 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
| 708 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
| 709 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
| 710 |
+
|
| 711 |
+
return out
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers==0.25.1
|
| 2 |
+
gradio==4.19.2
|
| 3 |
+
Pillow==10.2.0
|
| 4 |
+
torch==2.2.0
|
safetensors/AnimateLCM-SVD-xt-1.1.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94b2da1fcca8d03458ef0b07b94b4c55f94117cb0d90265c6c8452239ecc166e
|
| 3 |
+
size 6098682464
|
safetensors/AnimateLCM-SVD-xt.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ca55e35f29437e8a65e8a1a9ce75262d5bab3d4fe137bdc3f3a94512c54b377
|
| 3 |
+
size 6098682464
|
test_imgs/ai-generated-8255456_1280.png
ADDED
|
Git LFS Details
|
test_imgs/ai-generated-8411866_1280.jpg
ADDED
|
test_imgs/ai-generated-8463496_1280.jpg
ADDED
|
test_imgs/ai-generated-8476858_1280.png
ADDED
|
test_imgs/ai-generated-8479572_1280.jpg
ADDED
|
test_imgs/ai-generated-8481641_1280.jpg
ADDED
|
test_imgs/ai-generated-8489879_1280.png
ADDED
|
Git LFS Details
|
test_imgs/ai-generated-8496135_1280.jpg
ADDED
|
test_imgs/ai-generated-8496952_1280.jpg
ADDED
|
test_imgs/ai-generated-8498844_1280.jpg
ADDED
|
test_imgs/bird-7411270_1280.jpg
ADDED
|
test_imgs/bird-7586857_1280.jpg
ADDED
|
test_imgs/bird-8014191_1280.jpg
ADDED
|
test_imgs/couple-8019370_1280.jpg
ADDED
|
test_imgs/cupcakes-380178_1280.jpg
ADDED
|
test_imgs/dog-7330712_1280.jpg
ADDED
|
test_imgs/dog-7396912_1280.jpg
ADDED
|
test_imgs/girl-4898696_1280.jpg
ADDED
|
test_imgs/grey-capped-flycatcher-8071233_1280.jpg
ADDED
|
test_imgs/halloween-4585684_1280.jpg
ADDED
|
test_imgs/leaf-7260246_1280.jpg
ADDED
|
test_imgs/meerkat-7465819_1280.jpg
ADDED
|
test_imgs/mobile-phone-1875813_1280.jpg
ADDED
|
test_imgs/mother-8097324_1280.jpg
ADDED
|
test_imgs/plane-8145957_1280.jpg
ADDED
|
test_imgs/power-station-6579092_1280.jpg
ADDED
|
test_imgs/ship-7833921_1280.jpg
ADDED
|
test_imgs/sleep-7871915_1280.jpg
ADDED
|
test_imgs/squirrel-7985502_1280.jpg
ADDED
|
test_imgs/squirrel-8211238_1280.jpg
ADDED
|
test_imgs/training-8122941_1280.jpg
ADDED
|