Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import PIL
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from transformers import BertConfig, BertTokenizer, XLMRobertaForSequenceClassification
|
11 |
+
from keras.models import load_model
|
12 |
+
|
13 |
+
|
14 |
+
def text_clf(text):
|
15 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
|
16 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
vocab_file = "vocab.txt" # 词汇表
|
18 |
+
tokenizer = BertTokenizer(vocab_file)
|
19 |
+
# 加载模型
|
20 |
+
config = BertConfig.from_pretrained("nanaaaa/emotion_chinese_english")
|
21 |
+
model = XLMRobertaForSequenceClassification.from_pretrained("nanaaaa/emotion_chinese_english", config=config)
|
22 |
+
# model.to(device)
|
23 |
+
inputs = tokenizer(text, return_tensors="pt")
|
24 |
+
# inputs.to(device)
|
25 |
+
# 模型推断
|
26 |
+
outputs = model(**inputs)
|
27 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
28 |
+
# 创建标签和概率列表
|
29 |
+
labels = ["害怕", "高兴喵", "惊喜", "伤心", "生气"]
|
30 |
+
probabilities = probs.detach().cpu().numpy()[0].tolist()
|
31 |
+
# 返回标签和概率列表
|
32 |
+
return {labels[i]: float(probabilities[i]) for i in range(len(labels))}
|
33 |
+
|
34 |
+
|
35 |
+
def audio_clf(aud):
|
36 |
+
my_model = load_model('D://speech_mfcc_model.h5')
|
37 |
+
|
38 |
+
def normalizeVoiceLen(y, normalizedLen):
|
39 |
+
nframes = len(y)
|
40 |
+
y = np.reshape(y, [nframes, 1]).T
|
41 |
+
# 归一化音频长度为2s,32000数据点
|
42 |
+
if (nframes < normalizedLen):
|
43 |
+
res = normalizedLen - nframes
|
44 |
+
res_data = np.zeros([1, res], dtype=np.float32)
|
45 |
+
y = np.reshape(y, [nframes, 1]).T
|
46 |
+
y = np.c_[y, res_data]
|
47 |
+
else:
|
48 |
+
y = y[:, 0:normalizedLen]
|
49 |
+
return y[0]
|
50 |
+
|
51 |
+
def getNearestLen(framelength, sr):
|
52 |
+
framesize = framelength * sr
|
53 |
+
# 找到与当前framesize最接近的2的正整数次方
|
54 |
+
nfftdict = {}
|
55 |
+
lists = [32, 64, 128, 256, 512, 1024]
|
56 |
+
for i in lists:
|
57 |
+
nfftdict[i] = abs(framesize - i)
|
58 |
+
print(nfftdict)
|
59 |
+
sortlist = sorted(nfftdict.items(), key=lambda x: x[1])
|
60 |
+
print(sortlist)
|
61 |
+
framesize = int(sortlist[0][0]) # 取最接近当前framesize的那个2的正整数次方值为新的framesize
|
62 |
+
return framesize
|
63 |
+
|
64 |
+
VOICE_LEN = 35000
|
65 |
+
sr, y = aud
|
66 |
+
N_FFT = getNearestLen(0.5, sr)
|
67 |
+
y = normalizeVoiceLen(y, VOICE_LEN) # 归一化长度
|
68 |
+
mfcc_data = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, n_fft=N_FFT, hop_length=int(N_FFT / 4))
|
69 |
+
feature = np.mean(mfcc_data, axis=0)
|
70 |
+
# 数据标准化
|
71 |
+
data = feature.tolist()
|
72 |
+
DATA_MEAN = np.mean(feature.tolist(), axis=0)
|
73 |
+
DATA_STD = np.std(feature.tolist(), axis=0)
|
74 |
+
data -= DATA_MEAN
|
75 |
+
data /= DATA_STD
|
76 |
+
data = np.array(data)
|
77 |
+
data = data.reshape((1, data.shape[0], 1))
|
78 |
+
pred = my_model.predict(data)
|
79 |
+
labels1 = ["angry", "fear", "joy", "neutral", "sadness", "surprise"]
|
80 |
+
probabilities1 = pred[0].tolist()
|
81 |
+
return {labels1[i]: float(probabilities1[i]) for i in range(len(labels1))}
|
82 |
+
|
83 |
+
|
84 |
+
def cir_clf(L, R):
|
85 |
+
df_4 = pd.read_csv(r'../df_4.csv', encoding="gbk")
|
86 |
+
fig, ax = plt.subplots()
|
87 |
+
r = df_4["R_nor"][int(L):int(R)]
|
88 |
+
theta = (2 * np.pi * df_4["Theta_nor"])[int(L):int(R)]
|
89 |
+
|
90 |
+
def clf_col(x):
|
91 |
+
if -1.5 * np.pi > x > -2 * np.pi:
|
92 |
+
return 5
|
93 |
+
if -1.5 * np.pi < x < -1.1 * np.pi:
|
94 |
+
return 2
|
95 |
+
if -1.1 * np.pi < x < -1 * np.pi:
|
96 |
+
return 3
|
97 |
+
if 1.04 * np.pi > x > 1 * np.pi:
|
98 |
+
return 3
|
99 |
+
if 1.1 * np.pi < x < 1.375 * np.pi:
|
100 |
+
return 4
|
101 |
+
if 1.625 * np.pi > x > 1.375 * np.pi:
|
102 |
+
return 1
|
103 |
+
if 1.625 * np.pi < x < 2 * np.pi:
|
104 |
+
return 0
|
105 |
+
|
106 |
+
theta1 = theta.copy()
|
107 |
+
colors = theta1.apply(lambda x: clf_col(x))
|
108 |
+
ax = plt.subplot(111, projection="polar")
|
109 |
+
c = ax.scatter(theta, r, c=colors, cmap="hsv", alpha=0.6)
|
110 |
+
fig.set_size_inches(10, 10)
|
111 |
+
|
112 |
+
def fig2data(fig):
|
113 |
+
import PIL.Image as Image
|
114 |
+
fig.canvas.draw()
|
115 |
+
w, h = fig.canvas.get_width_height()
|
116 |
+
buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
|
117 |
+
buf.shape = (w, h, 4)
|
118 |
+
buf = np.roll(buf, 3, axis=2)
|
119 |
+
image = Image.frombytes("RGBA", (w, h), buf.tostring())
|
120 |
+
image = np.asarray(image)
|
121 |
+
return image
|
122 |
+
|
123 |
+
return fig2data(fig)
|
124 |
+
|
125 |
+
|
126 |
+
with gr.Blocks() as demo:
|
127 |
+
with gr.Tab("Flip Text"):
|
128 |
+
text = gr.Textbox(label="文本哟")
|
129 |
+
text_output = gr.outputs.Label(label="情感呢")
|
130 |
+
text_button = gr.Button("确认")
|
131 |
+
|
132 |
+
with gr.Tab("Flip Audio"):
|
133 |
+
audio = gr.Audio(label="音频捏")
|
134 |
+
audio_output = gr.outputs.Label(label="情感哟")
|
135 |
+
audio_button = gr.Button("确认")
|
136 |
+
|
137 |
+
with gr.Tab("Flip Circle"):
|
138 |
+
cir_l = gr.Slider(0, 30000, step=1)
|
139 |
+
cir_r = gr.Slider(0, 30000, step=1)
|
140 |
+
cir_output = gr.outputs.Image(type='numpy', label="情感圈")
|
141 |
+
cir_button = gr.Button("确认")
|
142 |
+
|
143 |
+
text_button.click(fn=text_clf, inputs=text, outputs=text_output)
|
144 |
+
audio_button.click(fn=audio_clf, inputs=audio, outputs=audio_output)
|
145 |
+
cir_button.click(fn=cir_clf, inputs=[cir_l, cir_r], outputs=cir_output)
|
146 |
+
|
147 |
+
demo.launch(share=True)
|