Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import time | |
import openai | |
import base64 | |
import pytz | |
import uuid | |
from threading import Thread | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from datetime import datetime | |
import json | |
import os | |
from moviepy.editor import ImageSequenceClip | |
from gradio_client import Client, file | |
import subprocess | |
import ffmpeg | |
api_key = os.getenv("OPEN_AI_KEY") | |
user_name = os.getenv("USER_NAME") | |
password = os.getenv("PASSWORD") | |
LENGTH = 3 | |
WEBCAM = 0 | |
MARKDOWN = """ | |
# Conntour | |
""" | |
AVATARS = ( | |
"https://assets-global.website-files.com/63d6dca820934a77a340f31e/63dfb7a21b4c08282d524010_pyramid.png", | |
"https://media.roboflow.com/spaces/openai-white-logomark.png" | |
) | |
# Set your OpenAI API key | |
openai.api_key = api_key | |
MODEL="gpt-4o" | |
client = openai.OpenAI(api_key=api_key) | |
# Global variable to stop the video capture loop | |
stop_capture = False | |
alerts_mode = True | |
def clip_video_segment_2(input_video_path, start_time, duration): | |
os.makedirs('videos', exist_ok=True) | |
output_video_path = f"videos/{uuid.uuid4()}.mp4" | |
# Use ffmpeg-python to clip the video | |
try: | |
( | |
ffmpeg | |
.input(input_video_path, ss=start_time) # Seek to start_time | |
.output(output_video_path, t=duration, c='copy') # Set the duration | |
.run(overwrite_output=True) | |
) | |
print('input_video_path', input_video_path, output_video_path) | |
return output_video_path | |
except ffmpeg.Error as e: | |
print(f"Error clipping video: {e}") | |
return None | |
def clip_video_segment(input_video_path, start_time, duration): | |
os.makedirs('videos', exist_ok=True) | |
output_video_path = f"videos/{uuid.uuid4()}.mp4" | |
subprocess.call([ | |
'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path, | |
'-t', str(duration), '-c', 'copy', output_video_path | |
]) | |
print('input_video_path', input_video_path, output_video_path) | |
return output_video_path | |
def encode_to_video_fast(frames, fps): | |
os.makedirs('videos', exist_ok=True) | |
video_clip_path = f"videos/{uuid.uuid4()}.mp4" | |
# Get frame size | |
height, width, layers = frames[0].shape | |
size = (width, height) | |
# Define the codec and create VideoWriter object | |
fourcc = cv2.VideoWriter_fourcc(*'h264') # You can also try 'XVID', 'MJPG', etc. | |
out = cv2.VideoWriter(video_clip_path, fourcc, fps, size) | |
for frame in frames: | |
out.write(frame) | |
out.release() | |
return video_clip_path | |
def encode_to_video(frames, fps): | |
os.makedirs('videos', exist_ok=True) | |
video_clip_path = f"videos/{uuid.uuid4()}.mp4" | |
# Create a video clip from the frames using moviepy | |
clip = ImageSequenceClip([frame[:, :, ::-1] for frame in frames], fps=fps) # Convert from BGR to RGB | |
clip.write_videofile(video_clip_path, codec="libx264") | |
# Convert the video file to base64 | |
with open(video_clip_path, "rb") as video_file: | |
video_data = base64.b64encode(video_file.read()).decode('utf-8') | |
return video_clip_path | |
# Function to process video frames using GPT-4 API | |
def process_frames(frames, frames_to_skip = 1): | |
os.makedirs('saved_frames', exist_ok=True) | |
curr_frame=0 | |
base64Frames = [] | |
while curr_frame < len(frames) - 1: | |
_, buffer = cv2.imencode(".jpg", frames[curr_frame]) | |
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) | |
curr_frame += frames_to_skip | |
return base64Frames | |
# Function to check condition using GPT-4 API | |
def check_condition(prompt, base64Frames): | |
start_time = time.time() | |
print('checking condition for frames:', len(base64Frames)) | |
# Save frames as images | |
messages = [ | |
{"role": "system", "content": """You are analyzing video to check if the user's condition is met. | |
Please respond with a JSON object in the following format: | |
{"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""}, | |
{"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]} | |
] | |
response = client.chat.completions.create( | |
model="gpt-4o", | |
messages=messages, | |
temperature=0, | |
response_format={ "type": "json_object" } | |
) | |
end_time = time.time() | |
processing_time = end_time - start_time | |
frames_count = len(base64Frames) | |
api_response = response.choices[0].message.content | |
try: | |
jsonNew = json.loads(api_response) | |
print('result', response.usage.total_tokens, jsonNew) | |
return frames_count, processing_time, jsonNew | |
except: | |
print('result', response.usage.total_tokens, api_response) | |
return frames_count, processing_time, api_response | |
# Function to process video clip and update the chatbot | |
def process_clip(prompt, frames, chatbot): | |
# Print current time in Israel | |
israel_tz = pytz.timezone('Asia/Jerusalem') | |
start_time = datetime.now(israel_tz).strftime('%H:%M:%S') | |
print("[Start]:", start_time, len(frames)) | |
# Encode frames into a video clip | |
fps = int(len(frames) / LENGTH) | |
base64Frames = process_frames(frames, fps) | |
frames_count, processing_time, api_response = check_condition(prompt, base64Frames) | |
if api_response["condition_met"] == True: | |
finish_time = datetime.now(israel_tz).strftime('%H:%M:%S') | |
video_clip_path = encode_to_video_fast(frames, fps) | |
chatbot.append(((video_clip_path,), None)) | |
result = f"Time: {start_time}\n" | |
chatbot.append((result, None)) | |
frame_paths = [] | |
for i, base64_frame in enumerate(base64Frames): | |
frame_data = base64.b64decode(base64_frame) | |
frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg' | |
with open(frame_path, "wb") as f: | |
f.write(frame_data) | |
frame_paths.append(frame_path) | |
def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id): | |
global stop_capture | |
if not stop_capture: | |
israel_tz = pytz.timezone('Asia/Jerusalem') | |
start_time = datetime.now(israel_tz).strftime('%H:%M:%S') | |
print("[Start]:", start_time, len(frames)) | |
frames_to_skip = int(fps) | |
base64Frames = process_frames(frames, frames_to_skip) | |
frames_count, processing_time, api_response = check_condition(prompt, base64Frames) | |
result = None | |
if api_response and api_response.get("condition_met", False): | |
# video_clip_path = encode_to_video_fast(frames, fps) | |
video_clip_path = clip_video_segment_2(video_path, id*LENGTH, LENGTH) | |
chatbot.append(((video_clip_path,), None)) | |
chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None)) | |
return chatbot | |
# Function to capture video frames | |
def analyze_stream(prompt, stream, chatbot): | |
global stop_capture | |
stop_capture = False | |
cap = cv2.VideoCapture(stream or WEBCAM) | |
frames = [] | |
start_time = time.time() | |
while not stop_capture: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frames.append(frame) | |
# Sample the frames every 5 seconds | |
if time.time() - start_time >= LENGTH: | |
# Start a new thread for processing the video clip | |
Thread(target=process_clip, args=(prompt, frames.copy(), chatbot,)).start() | |
frames = [] | |
start_time = time.time() | |
yield chatbot | |
cap.release() | |
return chatbot | |
def analyze_video_file(prompt, video_path, chatbot): | |
global stop_capture | |
stop_capture = False # Reset the stop flag when analysis starts | |
cap = cv2.VideoCapture(video_path) | |
# Get video properties | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) # Frames per second | |
frames_per_chunk = fps * LENGTH # Number of frames per 5-second chunk | |
frames = [] | |
chunk = 0 | |
# Create a thread pool for concurrent processing | |
with ThreadPoolExecutor(max_workers=4) as executor: | |
futures = [] | |
while not stop_capture: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frames.append(frame) | |
# Split the video into chunks of frames corresponding to 5 seconds | |
if len(frames) >= frames_per_chunk: | |
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk)) | |
frames = [] | |
chunk+=1 | |
# If any remaining frames that are less than 5 seconds, process them as a final chunk | |
if len(frames) > 0: | |
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk)) | |
chunk+=1 | |
cap.release() | |
# Yield results as soon as each thread completes | |
for future in as_completed(futures): | |
result = future.result() | |
yield result | |
return chatbot | |
# Function to stop video capture | |
def stop_capture_func(): | |
global stop_capture | |
stop_capture = True | |
# Gradio interface | |
with gr.Blocks(title="Conntour", fill_height=True) as demo: | |
with gr.Tab("Analyze"): | |
with gr.Row(): | |
video = gr.Video(label="Video Source") | |
with gr.Column(): | |
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS) | |
prompt = gr.Textbox(label="Enter your prompt alert") | |
start_btn = gr.Button("Start") | |
stop_btn = gr.Button("Stop") | |
start_btn.click(analyze_video_file, inputs=[prompt, video, chatbot], outputs=[chatbot], queue=True) | |
stop_btn.click(stop_capture_func) | |
with gr.Tab("Alerts"): | |
with gr.Row(): | |
stream = gr.Textbox(label="Video Source", value="https://streamapi2.eu.loclx.io/video_feed/101 OR rtsp://admin:[email protected]:5678/Streaming/Channels/101") | |
with gr.Column(): | |
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS) | |
prompt = gr.Textbox(label="Enter your prompt alert") | |
start_btn = gr.Button("Start") | |
stop_btn = gr.Button("Stop") | |
start_btn.click(analyze_stream, inputs=[prompt, stream, chatbot], outputs=[chatbot], queue=True) | |
stop_btn.click(stop_capture_func) | |
demo.launch(favicon_path='favicon.ico', auth=(user_name, password)) |