Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
|
| 5 |
-
"""
|
| 6 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 7 |
-
"""
|
| 8 |
# Load the model and tokenizer
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
|
| 13 |
def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p):
|
| 14 |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
|
@@ -37,7 +32,6 @@ def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temper
|
|
| 37 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
return corrected_text
|
| 39 |
|
| 40 |
-
|
| 41 |
def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
|
| 42 |
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
|
| 43 |
yield response
|
|
@@ -48,7 +42,6 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
| 48 |
demo = gr.ChatInterface(
|
| 49 |
respond,
|
| 50 |
additional_inputs=[
|
| 51 |
-
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 52 |
gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"),
|
| 53 |
gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"),
|
| 54 |
gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"),
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
# Load the model and tokenizer
|
| 5 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
|
|
|
|
| 7 |
|
| 8 |
def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p):
|
| 9 |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
|
|
|
| 32 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 33 |
return corrected_text
|
| 34 |
|
|
|
|
| 35 |
def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
|
| 36 |
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
|
| 37 |
yield response
|
|
|
|
| 42 |
demo = gr.ChatInterface(
|
| 43 |
respond,
|
| 44 |
additional_inputs=[
|
|
|
|
| 45 |
gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"),
|
| 46 |
gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"),
|
| 47 |
gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"),
|