File size: 4,007 Bytes
e547b24
 
 
 
 
 
 
 
 
 
 
 
919ba89
e547b24
 
 
 
 
6f5a32e
e547b24
 
 
 
9be63af
e547b24
 
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
 
 
 
 
 
 
 
 
 
 
6f5a32e
 
e547b24
 
 
 
 
 
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
 
02f8cfa
bc84ac0
02f8cfa
 
73f7edc
e547b24
 
02f8cfa
bd9b7ca
02f8cfa
 
 
 
bd9b7ca
02f8cfa
bd9b7ca
 
 
 
 
 
 
e547b24
02f8cfa
bd9b7ca
02f8cfa
bd9b7ca
e547b24
02f8cfa
e547b24
06ca9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json

# Project by Nymbo

API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
    if prompt == "" or prompt == None:
        return None

    key = random.randint(0, 999)
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("<center><h1>FLUX.1-Dev体验-By可乐君</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="提示词", placeholder="在这输入提示词", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("高级设置", open=False):
                        negative_prompt = gr.Textbox(label="负面提示", placeholder="不想出现在照片里的元素", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="取样步数", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG量表", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="取样方法", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="强度", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="种子", value=-1, minimum=-1, maximum=1000000000, step=1)

        with gr.Row():
            text_button = gr.Button("作图", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="图片输出", elem_id="gallery")
        
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)

app.launch(show_api=False, share=False)