Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,422 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import pandas as pd
|
3 |
-
# import os
|
4 |
-
# import io
|
5 |
-
# import zipfile
|
6 |
-
# import shutil
|
7 |
-
# from bs4 import BeautifulSoup
|
8 |
-
# from typing import List, TypedDict
|
9 |
-
# from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
-
# from langchain_community.vectorstores import Chroma
|
11 |
-
# from langchain_core.documents import Document
|
12 |
-
# from langchain_core.prompts import PromptTemplate
|
13 |
-
# from langchain_core.output_parsers import StrOutputParser
|
14 |
-
# from langchain_core.runnables import RunnablePassthrough
|
15 |
-
# from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
16 |
-
# from langchain_community.tools.tavily_search import TavilySearchResults
|
17 |
-
# from langgraph.graph import END, StateGraph, START
|
18 |
-
# import chromadb
|
19 |
-
|
20 |
-
# # ... (Keep all necessary imports from section 1 here)
|
21 |
-
|
22 |
-
# def process_documents(folder_path):
|
23 |
-
# """Process documents from the uploaded folder."""
|
24 |
-
# d = {"chunk": [], "url": []}
|
25 |
-
|
26 |
-
# for path in os.listdir(folder_path):
|
27 |
-
# if not path.endswith(".html"): # Skip non-HTML files
|
28 |
-
# continue
|
29 |
-
|
30 |
-
# url = "https://" + path.replace("=", "/")
|
31 |
-
# file_path = os.path.join(folder_path, path)
|
32 |
-
|
33 |
-
# with open(file_path, 'rb') as stream:
|
34 |
-
# content = stream.read().decode("utf-8")
|
35 |
-
# soup = BeautifulSoup(content, "html.parser")
|
36 |
-
|
37 |
-
# title = soup.find("title")
|
38 |
-
# title_text = title.string.replace(" | Dataiku", "") if title else "No Title"
|
39 |
-
|
40 |
-
# main_content = soup.find("main")
|
41 |
-
# text_content = main_content.get_text(strip=True) if main_content else soup.get_text(strip=True)
|
42 |
-
|
43 |
-
# full_content = f"{title_text}\n\n{text_content}"
|
44 |
-
|
45 |
-
# d["chunk"].append(full_content)
|
46 |
-
# d["url"].append(url)
|
47 |
-
|
48 |
-
# return pd.DataFrame(d)
|
49 |
-
|
50 |
-
# def setup_rag_system(folder_path):
|
51 |
-
# """Initialize the RAG system with the provided documents."""
|
52 |
-
# # ... (Keep your existing setup_rag_system implementation here)
|
53 |
-
# return vector_store
|
54 |
-
|
55 |
-
# def create_workflow(vector_store):
|
56 |
-
# """Create the RAG workflow."""
|
57 |
-
# # ... (Keep your existing workflow creation code here)
|
58 |
-
# return workflow.compile()
|
59 |
-
|
60 |
-
# def handle_upload(folder_files, csv_file):
|
61 |
-
# try:
|
62 |
-
# # Create temporary directory
|
63 |
-
# temp_dir = "temp_upload"
|
64 |
-
# os.makedirs(temp_dir, exist_ok=True)
|
65 |
-
|
66 |
-
# # Process document files
|
67 |
-
# doc_dir = os.path.join(temp_dir, "docs")
|
68 |
-
# os.makedirs(doc_dir, exist_ok=True)
|
69 |
-
|
70 |
-
# # Handle zip file or individual files
|
71 |
-
# for file in folder_files:
|
72 |
-
# if file.name.endswith('.zip'):
|
73 |
-
# with zipfile.ZipFile(io.BytesIO(file.read())) as zip_ref:
|
74 |
-
# zip_ref.extractall(doc_dir)
|
75 |
-
# else:
|
76 |
-
# with open(os.path.join(doc_dir, file.name), "wb") as f:
|
77 |
-
# f.write(file.read())
|
78 |
-
|
79 |
-
# # Process CSV requirements
|
80 |
-
# csv_content = csv_file.read()
|
81 |
-
# requirements_df = pd.read_csv(io.BytesIO(csv_content), encoding='latin-1')
|
82 |
-
# requirements = requirements_df.iloc[:, 0].tolist() # Get first column
|
83 |
-
|
84 |
-
# # Setup RAG system
|
85 |
-
# vector_store = setup_rag_system(doc_dir)
|
86 |
-
# app = create_workflow(vector_store)
|
87 |
-
|
88 |
-
# # Process requirements
|
89 |
-
# results = []
|
90 |
-
# for question in requirements:
|
91 |
-
# inputs = {"question": question}
|
92 |
-
# output = app.invoke(inputs)
|
93 |
-
# results.append({
|
94 |
-
# "Requirement": question,
|
95 |
-
# "Response": output.get("generation", "No response generated")
|
96 |
-
# })
|
97 |
-
|
98 |
-
# # Cleanup
|
99 |
-
# shutil.rmtree(temp_dir)
|
100 |
-
|
101 |
-
# return pd.DataFrame(results)
|
102 |
-
|
103 |
-
# except Exception as e:
|
104 |
-
# return pd.DataFrame({"Error": [str(e)]})
|
105 |
-
|
106 |
-
# def create_gradio_interface():
|
107 |
-
# iface = gr.Interface(
|
108 |
-
# fn=handle_upload,
|
109 |
-
# inputs=[
|
110 |
-
# gr.File(file_count="multiple", label="Upload Documents (ZIP or HTML files)"),
|
111 |
-
# gr.File(label="Upload Requirements CSV", type="binary")
|
112 |
-
# ],
|
113 |
-
# outputs=gr.Dataframe(),
|
114 |
-
# title="RAG System for RFP Analysis",
|
115 |
-
# description="Upload documents (ZIP or HTML files) and a CSV file with requirements."
|
116 |
-
# )
|
117 |
-
# return iface
|
118 |
-
|
119 |
-
# if __name__ == "__main__":
|
120 |
-
# iface = create_gradio_interface()
|
121 |
-
# iface.launch()
|
122 |
-
|
123 |
-
# import gradio as gr
|
124 |
-
# import pandas as pd
|
125 |
-
# import os
|
126 |
-
# import torch
|
127 |
-
# import zipfile
|
128 |
-
# import tempfile
|
129 |
-
# import shutil
|
130 |
-
# from bs4 import BeautifulSoup
|
131 |
-
# from typing import List, TypedDict
|
132 |
-
# from langchain_huggingface import HuggingFaceEmbeddings
|
133 |
-
# from langchain_community.vectorstores import Chroma
|
134 |
-
# from langchain_core.documents import Document
|
135 |
-
# from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
|
136 |
-
# from langchain_core.output_parsers import StrOutputParser
|
137 |
-
# from langchain_core.runnables import RunnablePassthrough
|
138 |
-
# from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
139 |
-
# from langchain_core.pydantic_v1 import BaseModel, Field
|
140 |
-
# from langchain_community.tools.tavily_search import TavilySearchResults
|
141 |
-
# from langgraph.graph import END, StateGraph, START
|
142 |
-
# import chromadb
|
143 |
-
# import io
|
144 |
-
|
145 |
-
# # Environment variables setup
|
146 |
-
# os.environ["TAVILY_API_KEY"] = "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"
|
147 |
-
# os.environ["NVIDIA_API_KEY"] = "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"
|
148 |
-
# os.environ["LANGCHAIN_PROJECT"] = "RAG project"
|
149 |
-
|
150 |
-
# class GradeDocuments(BaseModel):
|
151 |
-
# """Binary score for relevance check on retrieved documents."""
|
152 |
-
# binary_score: str = Field(description="Documents are relevant to the question, 'yes' or 'no'")
|
153 |
-
|
154 |
-
# class GraphState(TypedDict):
|
155 |
-
# """Represents the state of our graph."""
|
156 |
-
# question: str
|
157 |
-
# generation: str
|
158 |
-
# decision: str
|
159 |
-
# documents: List[str]
|
160 |
-
|
161 |
-
# import os
|
162 |
-
# from bs4 import BeautifulSoup
|
163 |
-
# import pandas as pd
|
164 |
-
|
165 |
-
# def process_documents(temp_dir):
|
166 |
-
# """Process documents from the extracted zip folder with enhanced error handling."""
|
167 |
-
# d = {"chunk": [], "url": []}
|
168 |
-
|
169 |
-
# # Debug information
|
170 |
-
# print(f"Scanning directory: {temp_dir}")
|
171 |
-
|
172 |
-
# file_count = 0
|
173 |
-
# processed_count = 0
|
174 |
-
# error_count = 0
|
175 |
-
|
176 |
-
# # Recursively traverse the directory
|
177 |
-
# for root, dirs, files in os.walk(temp_dir):
|
178 |
-
# for file_name in files:
|
179 |
-
# file_count += 1
|
180 |
-
# file_path = os.path.join(root, file_name)
|
181 |
-
# print(f"Processing file: {file_path}")
|
182 |
-
|
183 |
-
# try:
|
184 |
-
# # Try different encodings
|
185 |
-
# encodings = ['utf-8', 'latin-1', 'cp1252']
|
186 |
-
# content = None
|
187 |
-
|
188 |
-
# for encoding in encodings:
|
189 |
-
# try:
|
190 |
-
# with open(file_path, 'r', encoding=encoding) as stream:
|
191 |
-
# content = stream.read()
|
192 |
-
# break
|
193 |
-
# except UnicodeDecodeError:
|
194 |
-
# continue
|
195 |
-
|
196 |
-
# if content is None:
|
197 |
-
# print(f"Failed to read file {file_path} with any encoding")
|
198 |
-
# error_count += 1
|
199 |
-
# continue
|
200 |
-
|
201 |
-
# soup = BeautifulSoup(content, "html.parser")
|
202 |
-
|
203 |
-
# title = soup.find("title")
|
204 |
-
# title_text = title.string.replace(" | Dataiku", "") if title else "No Title"
|
205 |
-
|
206 |
-
# main_content = soup.find("main")
|
207 |
-
# text_content = main_content.get_text(strip=True) if main_content else soup.get_text(strip=True)
|
208 |
-
|
209 |
-
# if not text_content.strip():
|
210 |
-
# print(f"No content extracted from {file_path}")
|
211 |
-
# error_count += 1
|
212 |
-
# continue
|
213 |
-
|
214 |
-
# full_content = f"{title_text}\n\n{text_content}"
|
215 |
-
|
216 |
-
# d["chunk"].append(full_content)
|
217 |
-
# d["url"].append("https://" + file_name.replace("=", "/"))
|
218 |
-
# processed_count += 1
|
219 |
-
# print(f"Successfully processed {file_path}")
|
220 |
-
|
221 |
-
# except Exception as e:
|
222 |
-
# print(f"Error processing file {file_path}: {str(e)}")
|
223 |
-
# error_count += 1
|
224 |
-
# continue
|
225 |
-
|
226 |
-
# print(f"\nProcessing Summary:")
|
227 |
-
# print(f"Total files found: {file_count}")
|
228 |
-
# print(f"Successfully processed: {processed_count}")
|
229 |
-
# print(f"Errors encountered: {error_count}")
|
230 |
-
|
231 |
-
# if not d["chunk"]:
|
232 |
-
# raise ValueError(f"No valid documents were processed. Processed {file_count} files with {error_count} errors.")
|
233 |
-
|
234 |
-
# return pd.DataFrame(d)
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
# # The rest of the code remains the same...
|
239 |
-
|
240 |
-
# def setup_rag_system(temp_dir):
|
241 |
-
# """Initialize the RAG system with the provided documents."""
|
242 |
-
# # Initialize embedding model
|
243 |
-
# model_name = "dunzhang/stella_en_1.5B_v5"
|
244 |
-
# model_kwargs = {'trust_remote_code': 'True'}
|
245 |
-
# embedding_model = HuggingFaceEmbeddings(
|
246 |
-
# model_name=model_name,
|
247 |
-
# show_progress=True,
|
248 |
-
# model_kwargs=model_kwargs
|
249 |
-
# )
|
250 |
-
|
251 |
-
# # Process documents
|
252 |
-
# df = process_documents(temp_dir)
|
253 |
-
# if df.empty:
|
254 |
-
# raise ValueError("No valid documents were processed")
|
255 |
-
|
256 |
-
# df["chunk_id"] = range(len(df))
|
257 |
-
|
258 |
-
# # Create documents list
|
259 |
-
# list_of_documents = [
|
260 |
-
# Document(
|
261 |
-
# page_content=record['chunk'],
|
262 |
-
# metadata={"source_url": record['url']}
|
263 |
-
# )
|
264 |
-
# for record in df[['chunk', 'url']].to_dict(orient='records')
|
265 |
-
# ]
|
266 |
-
|
267 |
-
# # Setup vector store
|
268 |
-
# ids = [str(i) for i in df['chunk_id'].to_list()]
|
269 |
-
# client = chromadb.PersistentClient(path=tempfile.mkdtemp())
|
270 |
-
# vector_store = Chroma(
|
271 |
-
# client=client,
|
272 |
-
# collection_name="rag-chroma",
|
273 |
-
# embedding_function=embedding_model,
|
274 |
-
# )
|
275 |
-
|
276 |
-
# # Add documents in batches
|
277 |
-
# batch_size = 100
|
278 |
-
# for i in range(0, len(list_of_documents), batch_size):
|
279 |
-
# end_idx = min(i + batch_size, len(list_of_documents))
|
280 |
-
# vector_store.add_documents(
|
281 |
-
# documents=list_of_documents[i:end_idx],
|
282 |
-
# ids=ids[i:end_idx]
|
283 |
-
# )
|
284 |
-
|
285 |
-
# return vector_store
|
286 |
-
|
287 |
-
# def create_workflow(vector_store):
|
288 |
-
# """Create the RAG workflow."""
|
289 |
-
# retriever = vector_store.as_retriever(search_kwargs={"k": 7})
|
290 |
-
# llm = ChatNVIDIA(model="meta/llama-3.3-70b-instruct", temperature=0)
|
291 |
-
|
292 |
-
# rag_prompt = PromptTemplate.from_template(
|
293 |
-
# """You are an assistant for responding to Request For Proposal documents for a
|
294 |
-
# bidder in the field of Data Science and Engineering. Use the following pieces
|
295 |
-
# of retrieved context to respond to the requests. If you don't know the answer,
|
296 |
-
# just say that you don't know. Provide detailed responses with specific examples
|
297 |
-
# and capabilities where possible.
|
298 |
-
|
299 |
-
# Question: {question}
|
300 |
-
# Context: {context}
|
301 |
-
# Answer:"""
|
302 |
-
# )
|
303 |
-
|
304 |
-
# def format_docs(result):
|
305 |
-
# return "\n\n".join(doc.page_content for doc in result)
|
306 |
-
|
307 |
-
# rag_chain = (
|
308 |
-
# {"context": retriever | format_docs, "question": RunnablePassthrough()}
|
309 |
-
# | rag_prompt
|
310 |
-
# | llm
|
311 |
-
# | StrOutputParser()
|
312 |
-
# )
|
313 |
-
|
314 |
-
# return rag_chain
|
315 |
-
|
316 |
-
# def preprocess_csv(csv_file):
|
317 |
-
# """Preprocess the CSV file to ensure proper format."""
|
318 |
-
# try:
|
319 |
-
# # First try reading as is
|
320 |
-
# df = pd.read_csv(csv_file.name, encoding='latin-1')
|
321 |
-
|
322 |
-
# # If there's only one column and no header
|
323 |
-
# if len(df.columns) == 1 and df.columns[0] != 'requirement':
|
324 |
-
# # Read again with no header and assign column name
|
325 |
-
# df = pd.read_csv(csv_file.name, encoding='latin-1', header=None, names=['requirement'])
|
326 |
-
|
327 |
-
# # If there's no 'requirement' column, assume first column is requirements
|
328 |
-
# if 'requirement' not in df.columns:
|
329 |
-
# df = df.rename(columns={df.columns[0]: 'requirement'})
|
330 |
-
|
331 |
-
# return df
|
332 |
-
# except Exception as e:
|
333 |
-
# # If standard CSV reading fails, try reading as plain text
|
334 |
-
# try:
|
335 |
-
# with open(csv_file.name, 'r', encoding='latin-1') as f:
|
336 |
-
# requirements = f.read().strip().split('\n')
|
337 |
-
# return pd.DataFrame({'requirement': requirements})
|
338 |
-
# except Exception as e2:
|
339 |
-
# raise ValueError(f"Could not process CSV file: {str(e2)}")
|
340 |
-
|
341 |
-
# def handle_upload(zip_file, csv_file):
|
342 |
-
# """Handle file uploads and process requirements with enhanced error handling."""
|
343 |
-
# try:
|
344 |
-
# # Create temporary directory
|
345 |
-
# temp_dir = tempfile.mkdtemp()
|
346 |
-
# print(f"Created temporary directory: {temp_dir}")
|
347 |
-
|
348 |
-
# try:
|
349 |
-
# # Extract zip file
|
350 |
-
# print(f"Extracting ZIP file: {zip_file.name}")
|
351 |
-
# with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
352 |
-
# zip_ref.extractall(temp_dir)
|
353 |
-
# print(f"ZIP contents: {zip_ref.namelist()}")
|
354 |
-
|
355 |
-
# # Process documents
|
356 |
-
# print("Processing documents...")
|
357 |
-
# df = process_documents(temp_dir)
|
358 |
-
# print(f"Processed {len(df)} documents")
|
359 |
-
|
360 |
-
# # Preprocess and read requirements CSV
|
361 |
-
# print("Processing CSV file...")
|
362 |
-
# requirements_df = preprocess_csv(csv_file)
|
363 |
-
# print(f"Found {len(requirements_df)} requirements")
|
364 |
-
|
365 |
-
# # Setup RAG system
|
366 |
-
# print("Setting up RAG system...")
|
367 |
-
# vector_store = setup_rag_system(temp_dir)
|
368 |
-
# rag_chain = create_workflow(vector_store)
|
369 |
-
|
370 |
-
# # Process requirements
|
371 |
-
# results = []
|
372 |
-
# for idx, req in enumerate(requirements_df['requirement'], 1):
|
373 |
-
# print(f"Processing requirement {idx}/{len(requirements_df)}")
|
374 |
-
# try:
|
375 |
-
# response = rag_chain.invoke(req)
|
376 |
-
# results.append({
|
377 |
-
# 'requirement': req,
|
378 |
-
# 'response': response
|
379 |
-
# })
|
380 |
-
# except Exception as e:
|
381 |
-
# error_msg = f"Error processing requirement: {str(e)}"
|
382 |
-
# print(error_msg)
|
383 |
-
# results.append({
|
384 |
-
# 'requirement': req,
|
385 |
-
# 'response': error_msg
|
386 |
-
# })
|
387 |
-
|
388 |
-
# return pd.DataFrame(results)
|
389 |
-
|
390 |
-
# finally:
|
391 |
-
# # Cleanup
|
392 |
-
# print(f"Cleaning up temporary directory: {temp_dir}")
|
393 |
-
# shutil.rmtree(temp_dir)
|
394 |
-
|
395 |
-
# except Exception as e:
|
396 |
-
# error_msg = f"Processing error: {str(e)}"
|
397 |
-
# print(error_msg)
|
398 |
-
# return pd.DataFrame([{'error': error_msg}])
|
399 |
-
# def main():
|
400 |
-
# """Main function to run the Gradio interface."""
|
401 |
-
# iface = gr.Interface(
|
402 |
-
# fn=handle_upload,
|
403 |
-
# inputs=[
|
404 |
-
# gr.File(label="Upload ZIP folder containing URLs", file_types=[".zip"]),
|
405 |
-
# gr.File(label="Upload Requirements CSV", file_types=[".csv", ".txt"])
|
406 |
-
# ],
|
407 |
-
# outputs=gr.Dataframe(),
|
408 |
-
# title="RAG System for RFP Analysis",
|
409 |
-
# description="""Upload a ZIP folder containing URL documents and a CSV file with requirements to analyze.
|
410 |
-
# The CSV file should contain requirements either as a single column or with a 'requirement' column header.""",
|
411 |
-
# examples=[],
|
412 |
-
# cache_examples=False
|
413 |
-
# )
|
414 |
-
|
415 |
-
# iface.launch(share=True)
|
416 |
-
|
417 |
-
# if __name__ == "__main__":
|
418 |
-
# main()
|
419 |
-
|
420 |
import gradio as gr
|
421 |
import pandas as pd
|
422 |
import os
|
@@ -698,7 +279,7 @@ def main():
|
|
698 |
gr.Textbox(label="Enter your NVIDIA API Key", type="password")
|
699 |
],
|
700 |
outputs=gr.Dataframe(),
|
701 |
-
title="RAG System for RFP Analysis",
|
702 |
description="""Upload a ZIP folder containing URL documents and a CSV file with requirements to analyze.
|
703 |
The CSV file should contain requirements either as a single column or with a 'requirement' column header.
|
704 |
Enter your NVIDIA API key to use the service.""",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
279 |
gr.Textbox(label="Enter your NVIDIA API Key", type="password")
|
280 |
],
|
281 |
outputs=gr.Dataframe(),
|
282 |
+
title="RAG System for RFP Analysis (This agent helps you verify if a specific tool matches your project requirements by uploading your tool documentation and your CSV containing your requirements.)",
|
283 |
description="""Upload a ZIP folder containing URL documents and a CSV file with requirements to analyze.
|
284 |
The CSV file should contain requirements either as a single column or with a 'requirement' column header.
|
285 |
Enter your NVIDIA API key to use the service.""",
|