Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -368,29 +368,93 @@ if Usage == 'Ask me anything (CSV file data)!📊':
|
|
368 |
try:
|
369 |
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
370 |
result = gpt3(col_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
except:
|
372 |
results = gpt3(userPrompt)
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
with col2:
|
375 |
-
sqlOutput =
|
376 |
warning(sqlOutput)
|
377 |
-
|
378 |
result_tab2=ps.sqldf(sqlOutput)
|
379 |
st.write(result_tab2)
|
|
|
380 |
with open("fewshot_matplot.txt", "r") as file:
|
381 |
text_plot = file.read()
|
382 |
-
|
383 |
result_tab = result_tab2.reset_index(drop=True)
|
384 |
result_tab_string = result_tab.to_string()
|
385 |
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
386 |
|
387 |
if len(gr_prompt) > 4097:
|
388 |
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
389 |
-
st.write('As of today, the NLP model text-davinci-003
|
390 |
|
391 |
elif len(result_tab2.columns) < 2:
|
392 |
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
393 |
-
|
394 |
else:
|
395 |
st.success("Plotting...")
|
396 |
response_graph = openai.Completion.create(
|
@@ -408,72 +472,10 @@ if Usage == 'Ask me anything (CSV file data)!📊':
|
|
408 |
|
409 |
else:
|
410 |
print('Retry! Graph could not be plotted *_*')
|
411 |
-
|
412 |
-
elif res == "Sample_Cars_csv":
|
413 |
-
df = pd.read_csv('cars.csv')
|
414 |
-
col= df.columns
|
415 |
-
try:
|
416 |
-
columns = str((df.columns).tolist())
|
417 |
-
column = clean(columns)
|
418 |
-
st.write('Columns:' )
|
419 |
-
st.text(col)
|
420 |
-
except:
|
421 |
-
pass
|
422 |
-
|
423 |
-
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
424 |
-
|
425 |
-
|
426 |
-
with st.form(key='columns_in_form'):
|
427 |
-
col1, col2 = st.columns(2)
|
428 |
-
with col1:
|
429 |
-
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
430 |
-
submitButton = st.form_submit_button(label = 'Submit')
|
431 |
-
if submitButton:
|
432 |
-
try:
|
433 |
-
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
434 |
-
result = gpt3(col_p)
|
435 |
except:
|
436 |
results = gpt3(userPrompt)
|
437 |
-
|
438 |
|
439 |
-
with col2:
|
440 |
-
sqlOutput = gpt3(col_p) #st.text_area('SQL Query', value=gpt3(col_p))
|
441 |
-
warning(sqlOutput)
|
442 |
-
cars=pd.read_csv('cars.csv')
|
443 |
-
result_tab2=ps.sqldf(sqlOutput)
|
444 |
-
st.write(result_tab2)
|
445 |
-
|
446 |
-
with open("fewshot_matplot.txt", "r") as file:
|
447 |
-
text_plot = file.read()
|
448 |
-
|
449 |
-
result_tab = result_tab2.reset_index(drop=True)
|
450 |
-
result_tab_string = result_tab.to_string()
|
451 |
-
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
452 |
-
|
453 |
-
if len(gr_prompt) > 4097:
|
454 |
-
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
455 |
-
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
456 |
-
|
457 |
-
elif len(result_tab2.columns) < 2:
|
458 |
-
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
459 |
-
|
460 |
-
else:
|
461 |
-
st.success("Plotting...")
|
462 |
-
response_graph = openai.Completion.create(
|
463 |
-
engine="text-davinci-003",
|
464 |
-
prompt = gr_prompt,
|
465 |
-
max_tokens=1024,
|
466 |
-
n=1,
|
467 |
-
stop=None,
|
468 |
-
temperature=0.5,
|
469 |
-
)
|
470 |
-
|
471 |
-
if response_graph['choices'][0]['text'] != "":
|
472 |
-
print(response_graph['choices'][0]['text'])
|
473 |
-
exec(response_graph['choices'][0]['text'])
|
474 |
-
|
475 |
-
else:
|
476 |
-
print('Retry! Graph could not be plotted *_*')
|
477 |
|
478 |
elif Usage == 'Ask me anything!😊':
|
479 |
st.text('''You can ask me:
|
|
|
368 |
try:
|
369 |
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
370 |
result = gpt3(col_p)
|
371 |
+
with col2:
|
372 |
+
sqlOutput = gpt3(col_p) #st.text_area('SQL Query', value=gpt3(col_p))
|
373 |
+
warning(sqlOutput)
|
374 |
+
# cars=pd.read_csv('cars.csv')
|
375 |
+
result_tab2=ps.sqldf(sqlOutput)
|
376 |
+
st.write(result_tab2)
|
377 |
+
with open("fewshot_matplot.txt", "r") as file:
|
378 |
+
text_plot = file.read()
|
379 |
+
|
380 |
+
result_tab = result_tab2.reset_index(drop=True)
|
381 |
+
result_tab_string = result_tab.to_string()
|
382 |
+
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
383 |
+
|
384 |
+
if len(gr_prompt) > 4097:
|
385 |
+
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
386 |
+
st.write('As of today, the NLP model text-davinci-003/gpt-3.5-turbo that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
387 |
+
|
388 |
+
elif len(result_tab2.columns) < 2:
|
389 |
+
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
390 |
+
|
391 |
+
else:
|
392 |
+
st.success("Plotting...")
|
393 |
+
response_graph = openai.Completion.create(
|
394 |
+
engine="text-davinci-003",
|
395 |
+
prompt = gr_prompt,
|
396 |
+
max_tokens=1024,
|
397 |
+
n=1,
|
398 |
+
stop=None,
|
399 |
+
temperature=0.5,
|
400 |
+
)
|
401 |
+
|
402 |
+
if response_graph['choices'][0]['text'] != "":
|
403 |
+
print(response_graph['choices'][0]['text'])
|
404 |
+
exec(response_graph['choices'][0]['text'])
|
405 |
+
|
406 |
+
else:
|
407 |
+
print('Retry! Graph could not be plotted *_*')
|
408 |
+
|
409 |
except:
|
410 |
results = gpt3(userPrompt)
|
411 |
+
st.success('loaded')
|
412 |
+
|
413 |
+
elif res == "Sample_Cars_csv":
|
414 |
+
df = pd.read_csv('cars.csv')
|
415 |
+
col= df.columns
|
416 |
+
try:
|
417 |
+
columns = str((df.columns).tolist())
|
418 |
+
column = clean(columns)
|
419 |
+
st.write('Columns:' )
|
420 |
+
st.text(col)
|
421 |
+
except:
|
422 |
+
pass
|
423 |
+
|
424 |
+
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
425 |
+
|
426 |
+
|
427 |
+
with st.form(key='columns_in_form'):
|
428 |
+
col1, col2 = st.columns(2)
|
429 |
+
with col1:
|
430 |
+
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
431 |
+
submitButton = st.form_submit_button(label = 'Submit')
|
432 |
+
if submitButton:
|
433 |
+
try:
|
434 |
+
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
435 |
+
result = gpt3(col_p)
|
436 |
+
|
437 |
with col2:
|
438 |
+
sqlOutput = result #st.text_area('SQL Query', value=gpt3(col_p))
|
439 |
warning(sqlOutput)
|
440 |
+
cars=pd.read_csv('cars.csv')
|
441 |
result_tab2=ps.sqldf(sqlOutput)
|
442 |
st.write(result_tab2)
|
443 |
+
|
444 |
with open("fewshot_matplot.txt", "r") as file:
|
445 |
text_plot = file.read()
|
446 |
+
|
447 |
result_tab = result_tab2.reset_index(drop=True)
|
448 |
result_tab_string = result_tab.to_string()
|
449 |
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
450 |
|
451 |
if len(gr_prompt) > 4097:
|
452 |
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
453 |
+
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
454 |
|
455 |
elif len(result_tab2.columns) < 2:
|
456 |
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
457 |
+
|
458 |
else:
|
459 |
st.success("Plotting...")
|
460 |
response_graph = openai.Completion.create(
|
|
|
472 |
|
473 |
else:
|
474 |
print('Retry! Graph could not be plotted *_*')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
except:
|
476 |
results = gpt3(userPrompt)
|
477 |
+
st.success('loaded')
|
478 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
elif Usage == 'Ask me anything!😊':
|
481 |
st.text('''You can ask me:
|