Spaces:
Running
Running
creating app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
| 6 |
+
from scipy.sparse import csr_matrix
|
| 7 |
+
from rapidfuzz import process, fuzz
|
| 8 |
+
import spotipy
|
| 9 |
+
from spotipy.oauth2 import SpotifyClientCredentials
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Spotify API setup
|
| 14 |
+
sp = spotipy.Spotify(client_credentials_manager=SpotifyClientCredentials(
|
| 15 |
+
client_id=os.environ['sp_client_id'],
|
| 16 |
+
client_secret=os.environ['sp_client_secret']))
|
| 17 |
+
|
| 18 |
+
# Define features for scaling and calculations
|
| 19 |
+
features = ['popularity', 'danceability', 'energy', 'loudness', 'speechiness',
|
| 20 |
+
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo']
|
| 21 |
+
default_weights = [1/len(features)] * len(features)
|
| 22 |
+
|
| 23 |
+
# Read and preprocess the data
|
| 24 |
+
tracks_data = pd.read_csv('filtered_songs.csv')
|
| 25 |
+
tracks_data = tracks_data[(tracks_data['popularity'] > 40) & (tracks_data['instrumentalness'] <= 0.85)]
|
| 26 |
+
|
| 27 |
+
# Function to fetch a song from Spotify
|
| 28 |
+
def get_song_from_spotify(song_name, artist_name=None):
|
| 29 |
+
try:
|
| 30 |
+
search_query = song_name if not artist_name else f"{song_name} artist:{artist_name}"
|
| 31 |
+
results = sp.search(q=search_query, limit=1, type='track')
|
| 32 |
+
if results['tracks']['items']:
|
| 33 |
+
track = results['tracks']['items'][0]
|
| 34 |
+
audio_features = sp.audio_features(track['id'])[0]
|
| 35 |
+
song_details = {
|
| 36 |
+
'id': track['id'],
|
| 37 |
+
'name': track['name'],
|
| 38 |
+
'popularity': track['popularity'],
|
| 39 |
+
'duration_ms': track['duration_ms'],
|
| 40 |
+
'explicit': int(track['explicit']),
|
| 41 |
+
'artists': ', '.join([artist['name'] for artist in track['artists']]),
|
| 42 |
+
'danceability': audio_features['danceability'],
|
| 43 |
+
'energy': audio_features['energy'],
|
| 44 |
+
'key': audio_features['key'],
|
| 45 |
+
'loudness': audio_features['loudness'],
|
| 46 |
+
'mode': audio_features['mode'],
|
| 47 |
+
'speechiness': audio_features['speechiness'],
|
| 48 |
+
'acousticness': audio_features['acousticness'],
|
| 49 |
+
'instrumentalness': audio_features['instrumentalness'],
|
| 50 |
+
'liveness': audio_features['liveness'],
|
| 51 |
+
'valence': audio_features['valence'],
|
| 52 |
+
'tempo': audio_features['tempo'],
|
| 53 |
+
'time_signature': audio_features['time_signature'],
|
| 54 |
+
}
|
| 55 |
+
return song_details
|
| 56 |
+
else:
|
| 57 |
+
return None
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Error fetching song from Spotify: {e}")
|
| 60 |
+
return None
|
| 61 |
+
|
| 62 |
+
# Enhanced Fuzzy Matching Function
|
| 63 |
+
def enhanced_fuzzy_matching(song_name, artist_name, df):
|
| 64 |
+
combined_query = f"{song_name} {artist_name}".strip()
|
| 65 |
+
df['combined'] = df['name'] + ' ' + df['artists']
|
| 66 |
+
matches = process.extractOne(combined_query, df['combined'], scorer=fuzz.token_sort_ratio)
|
| 67 |
+
return df.index[df['combined'] == matches[0]].tolist()[0] if matches else None
|
| 68 |
+
|
| 69 |
+
# Function to apply the selected scaler and calculate weighted cosine similarity
|
| 70 |
+
def calculate_weighted_cosine_similarity(input_song_index, weights, num_songs_to_output, tracks_data, scaler_choice):
|
| 71 |
+
# Apply the selected scaler
|
| 72 |
+
if scaler_choice == 'Standard Scaler':
|
| 73 |
+
scaler = StandardScaler()
|
| 74 |
+
else: # MinMaxScaler
|
| 75 |
+
scaler = MinMaxScaler()
|
| 76 |
+
scaled_features = scaler.fit_transform(tracks_data[features]) * weights
|
| 77 |
+
tracks_sparse = csr_matrix(scaled_features)
|
| 78 |
+
|
| 79 |
+
# Calculate cosine similarities
|
| 80 |
+
cosine_similarities = cosine_similarity(tracks_sparse[input_song_index], tracks_sparse).flatten()
|
| 81 |
+
similar_song_indices = np.argsort(-cosine_similarities)[1:num_songs_to_output+1]
|
| 82 |
+
return similar_song_indices
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Function to recommend songs
|
| 86 |
+
def recommend_songs_interface(song_name, artist_name, num_songs_to_output, scaler_choice, tracks_data, *input_weights):
|
| 87 |
+
num_songs_to_output = int(num_songs_to_output)
|
| 88 |
+
weights = np.array([float(weight) for weight in input_weights]) if input_weights else default_weights
|
| 89 |
+
weights /= np.sum(weights) # Normalize weights
|
| 90 |
+
|
| 91 |
+
song_index = enhanced_fuzzy_matching(song_name, artist_name, tracks_data)
|
| 92 |
+
if song_index is not None:
|
| 93 |
+
similar_indices = calculate_weighted_cosine_similarity(song_index, weights, num_songs_to_output, tracks_data, scaler_choice)
|
| 94 |
+
similar_songs = tracks_data.iloc[similar_indices][['name', 'artists']]
|
| 95 |
+
return similar_songs
|
| 96 |
+
else:
|
| 97 |
+
return pd.DataFrame(columns=['name', 'artists'])
|
| 98 |
+
|
| 99 |
+
# Gradio interface setup
|
| 100 |
+
description = "Enter a song name and artist name (optional) to get song recommendations. Adjust the feature weights using the sliders. The system will automatically normalize the weights."
|
| 101 |
+
|
| 102 |
+
inputs = [
|
| 103 |
+
gr.components.Textbox(label="Song Name", placeholder="Enter a song name..."),
|
| 104 |
+
gr.components.Textbox(label="Artist Name (optional)", placeholder="Enter artist name (if known)..."),
|
| 105 |
+
gr.components.Number(label="Number of Songs to Output", value=5),
|
| 106 |
+
gr.components.Dropdown(choices=["Standard Scaler", "MinMax Scaler"], label="Select Scaler", value="Standard Scaler")
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
# Add sliders for each feature weight
|
| 110 |
+
for feature in features:
|
| 111 |
+
inputs.append(gr.components.Slider(minimum=0, maximum=1, value=1/len(features), label=f"Weight for {feature}"))
|
| 112 |
+
|
| 113 |
+
# Gradio interface setup
|
| 114 |
+
iface = gr.Interface(
|
| 115 |
+
fn=lambda song_name, artist_name, num_songs_to_output, scaler_choice, *input_weights: recommend_songs_interface(song_name, artist_name, num_songs_to_output, scaler_choice, tracks_data, *input_weights),
|
| 116 |
+
inputs=inputs,
|
| 117 |
+
outputs=gr.components.Dataframe(),
|
| 118 |
+
title="Song Recommender",
|
| 119 |
+
description=description
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Run the Gradio app
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
iface.launch()
|