Spaces:
Build error
Build error
| import numpy as np | |
| import random | |
| import torch | |
| import torch.nn as nn | |
| from models.common import Conv, DWConv | |
| from utils.google_utils import attempt_download | |
| class CrossConv(nn.Module): | |
| # Cross Convolution Downsample | |
| def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): | |
| # ch_in, ch_out, kernel, stride, groups, expansion, shortcut | |
| super(CrossConv, self).__init__() | |
| c_ = int(c2 * e) # hidden channels | |
| self.cv1 = Conv(c1, c_, (1, k), (1, s)) | |
| self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) | |
| self.add = shortcut and c1 == c2 | |
| def forward(self, x): | |
| return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |
| class Sum(nn.Module): | |
| # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 | |
| def __init__(self, n, weight=False): # n: number of inputs | |
| super(Sum, self).__init__() | |
| self.weight = weight # apply weights boolean | |
| self.iter = range(n - 1) # iter object | |
| if weight: | |
| self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights | |
| def forward(self, x): | |
| y = x[0] # no weight | |
| if self.weight: | |
| w = torch.sigmoid(self.w) * 2 | |
| for i in self.iter: | |
| y = y + x[i + 1] * w[i] | |
| else: | |
| for i in self.iter: | |
| y = y + x[i + 1] | |
| return y | |
| class MixConv2d(nn.Module): | |
| # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 | |
| def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): | |
| super(MixConv2d, self).__init__() | |
| groups = len(k) | |
| if equal_ch: # equal c_ per group | |
| i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices | |
| c_ = [(i == g).sum() for g in range(groups)] # intermediate channels | |
| else: # equal weight.numel() per group | |
| b = [c2] + [0] * groups | |
| a = np.eye(groups + 1, groups, k=-1) | |
| a -= np.roll(a, 1, axis=1) | |
| a *= np.array(k) ** 2 | |
| a[0] = 1 | |
| c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b | |
| self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) | |
| self.bn = nn.BatchNorm2d(c2) | |
| self.act = nn.LeakyReLU(0.1, inplace=True) | |
| def forward(self, x): | |
| return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) | |
| class Ensemble(nn.ModuleList): | |
| # Ensemble of models | |
| def __init__(self): | |
| super(Ensemble, self).__init__() | |
| def forward(self, x, augment=False): | |
| y = [] | |
| for module in self: | |
| y.append(module(x, augment)[0]) | |
| # y = torch.stack(y).max(0)[0] # max ensemble | |
| # y = torch.stack(y).mean(0) # mean ensemble | |
| y = torch.cat(y, 1) # nms ensemble | |
| return y, None # inference, train output | |
| class ORT_NMS(torch.autograd.Function): | |
| '''ONNX-Runtime NMS operation''' | |
| def forward(ctx, | |
| boxes, | |
| scores, | |
| max_output_boxes_per_class=torch.tensor([100]), | |
| iou_threshold=torch.tensor([0.45]), | |
| score_threshold=torch.tensor([0.25])): | |
| device = boxes.device | |
| batch = scores.shape[0] | |
| num_det = random.randint(0, 100) | |
| batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device) | |
| idxs = torch.arange(100, 100 + num_det).to(device) | |
| zeros = torch.zeros((num_det,), dtype=torch.int64).to(device) | |
| selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous() | |
| selected_indices = selected_indices.to(torch.int64) | |
| return selected_indices | |
| def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold): | |
| return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold) | |
| class TRT_NMS(torch.autograd.Function): | |
| '''TensorRT NMS operation''' | |
| def forward( | |
| ctx, | |
| boxes, | |
| scores, | |
| background_class=-1, | |
| box_coding=1, | |
| iou_threshold=0.45, | |
| max_output_boxes=100, | |
| plugin_version="1", | |
| score_activation=0, | |
| score_threshold=0.25, | |
| ): | |
| batch_size, num_boxes, num_classes = scores.shape | |
| num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32) | |
| det_boxes = torch.randn(batch_size, max_output_boxes, 4) | |
| det_scores = torch.randn(batch_size, max_output_boxes) | |
| det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32) | |
| return num_det, det_boxes, det_scores, det_classes | |
| def symbolic(g, | |
| boxes, | |
| scores, | |
| background_class=-1, | |
| box_coding=1, | |
| iou_threshold=0.45, | |
| max_output_boxes=100, | |
| plugin_version="1", | |
| score_activation=0, | |
| score_threshold=0.25): | |
| out = g.op("TRT::EfficientNMS_TRT", | |
| boxes, | |
| scores, | |
| background_class_i=background_class, | |
| box_coding_i=box_coding, | |
| iou_threshold_f=iou_threshold, | |
| max_output_boxes_i=max_output_boxes, | |
| plugin_version_s=plugin_version, | |
| score_activation_i=score_activation, | |
| score_threshold_f=score_threshold, | |
| outputs=4) | |
| nums, boxes, scores, classes = out | |
| return nums, boxes, scores, classes | |
| class ONNX_ORT(nn.Module): | |
| '''onnx module with ONNX-Runtime NMS operation.''' | |
| def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80): | |
| super().__init__() | |
| self.device = device if device else torch.device("cpu") | |
| self.max_obj = torch.tensor([max_obj]).to(device) | |
| self.iou_threshold = torch.tensor([iou_thres]).to(device) | |
| self.score_threshold = torch.tensor([score_thres]).to(device) | |
| self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic | |
| self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], | |
| dtype=torch.float32, | |
| device=self.device) | |
| self.n_classes=n_classes | |
| def forward(self, x): | |
| boxes = x[:, :, :4] | |
| conf = x[:, :, 4:5] | |
| scores = x[:, :, 5:] | |
| if self.n_classes == 1: | |
| scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5, | |
| # so there is no need to multiplicate. | |
| else: | |
| scores *= conf # conf = obj_conf * cls_conf | |
| boxes @= self.convert_matrix | |
| max_score, category_id = scores.max(2, keepdim=True) | |
| dis = category_id.float() * self.max_wh | |
| nmsbox = boxes + dis | |
| max_score_tp = max_score.transpose(1, 2).contiguous() | |
| selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold) | |
| X, Y = selected_indices[:, 0], selected_indices[:, 2] | |
| selected_boxes = boxes[X, Y, :] | |
| selected_categories = category_id[X, Y, :].float() | |
| selected_scores = max_score[X, Y, :] | |
| X = X.unsqueeze(1).float() | |
| return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1) | |
| class ONNX_TRT(nn.Module): | |
| '''onnx module with TensorRT NMS operation.''' | |
| def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80): | |
| super().__init__() | |
| assert max_wh is None | |
| self.device = device if device else torch.device('cpu') | |
| self.background_class = -1, | |
| self.box_coding = 1, | |
| self.iou_threshold = iou_thres | |
| self.max_obj = max_obj | |
| self.plugin_version = '1' | |
| self.score_activation = 0 | |
| self.score_threshold = score_thres | |
| self.n_classes=n_classes | |
| def forward(self, x): | |
| boxes = x[:, :, :4] | |
| conf = x[:, :, 4:5] | |
| scores = x[:, :, 5:] | |
| if self.n_classes == 1: | |
| scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5, | |
| # so there is no need to multiplicate. | |
| else: | |
| scores *= conf # conf = obj_conf * cls_conf | |
| num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding, | |
| self.iou_threshold, self.max_obj, | |
| self.plugin_version, self.score_activation, | |
| self.score_threshold) | |
| return num_det, det_boxes, det_scores, det_classes | |
| class End2End(nn.Module): | |
| '''export onnx or tensorrt model with NMS operation.''' | |
| def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80): | |
| super().__init__() | |
| device = device if device else torch.device('cpu') | |
| assert isinstance(max_wh,(int)) or max_wh is None | |
| self.model = model.to(device) | |
| self.model.model[-1].end2end = True | |
| self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT | |
| self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes) | |
| self.end2end.eval() | |
| def forward(self, x): | |
| x = self.model(x) | |
| x = self.end2end(x) | |
| return x | |
| def attempt_load(weights, map_location=None): | |
| # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a | |
| model = Ensemble() | |
| for w in weights if isinstance(weights, list) else [weights]: | |
| attempt_download(w) | |
| ckpt = torch.load(w, map_location=map_location) # load | |
| model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model | |
| # Compatibility updates | |
| for m in model.modules(): | |
| if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: | |
| m.inplace = True # pytorch 1.7.0 compatibility | |
| elif type(m) is nn.Upsample: | |
| m.recompute_scale_factor = None # torch 1.11.0 compatibility | |
| elif type(m) is Conv: | |
| m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility | |
| if len(model) == 1: | |
| return model[-1] # return model | |
| else: | |
| print('Ensemble created with %s\n' % weights) | |
| for k in ['names', 'stride']: | |
| setattr(model, k, getattr(model[-1], k)) | |
| return model # return ensemble | |