Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	| # YOLOR PyTorch utils | |
| import datetime | |
| import logging | |
| import math | |
| import os | |
| import platform | |
| import subprocess | |
| import time | |
| from contextlib import contextmanager | |
| from copy import deepcopy | |
| from pathlib import Path | |
| import torch | |
| import torch.backends.cudnn as cudnn | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision | |
| try: | |
| import thop # for FLOPS computation | |
| except ImportError: | |
| thop = None | |
| logger = logging.getLogger(__name__) | |
| def torch_distributed_zero_first(local_rank: int): | |
| """ | |
| Decorator to make all processes in distributed training wait for each local_master to do something. | |
| """ | |
| if local_rank not in [-1, 0]: | |
| torch.distributed.barrier() | |
| yield | |
| if local_rank == 0: | |
| torch.distributed.barrier() | |
| def init_torch_seeds(seed=0): | |
| # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html | |
| torch.manual_seed(seed) | |
| if seed == 0: # slower, more reproducible | |
| cudnn.benchmark, cudnn.deterministic = False, True | |
| else: # faster, less reproducible | |
| cudnn.benchmark, cudnn.deterministic = True, False | |
| def date_modified(path=__file__): | |
| # return human-readable file modification date, i.e. '2021-3-26' | |
| t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) | |
| return f'{t.year}-{t.month}-{t.day}' | |
| def git_describe(path=Path(__file__).parent): # path must be a directory | |
| # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe | |
| s = f'git -C {path} describe --tags --long --always' | |
| try: | |
| return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] | |
| except subprocess.CalledProcessError as e: | |
| return '' # not a git repository | |
| def select_device(device='', batch_size=None): | |
| # device = 'cpu' or '0' or '0,1,2,3' | |
| s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string | |
| cpu = device.lower() == 'cpu' | |
| if cpu: | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False | |
| elif device: # non-cpu device requested | |
| os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable | |
| assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability | |
| cuda = not cpu and torch.cuda.is_available() | |
| if cuda: | |
| n = torch.cuda.device_count() | |
| if n > 1 and batch_size: # check that batch_size is compatible with device_count | |
| assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' | |
| space = ' ' * len(s) | |
| for i, d in enumerate(device.split(',') if device else range(n)): | |
| p = torch.cuda.get_device_properties(i) | |
| s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB | |
| else: | |
| s += 'CPU\n' | |
| logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe | |
| return torch.device('cuda:0' if cuda else 'cpu') | |
| def time_synchronized(): | |
| # pytorch-accurate time | |
| if torch.cuda.is_available(): | |
| torch.cuda.synchronize() | |
| return time.time() | |
| def profile(x, ops, n=100, device=None): | |
| # profile a pytorch module or list of modules. Example usage: | |
| # x = torch.randn(16, 3, 640, 640) # input | |
| # m1 = lambda x: x * torch.sigmoid(x) | |
| # m2 = nn.SiLU() | |
| # profile(x, [m1, m2], n=100) # profile speed over 100 iterations | |
| device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
| x = x.to(device) | |
| x.requires_grad = True | |
| print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') | |
| print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") | |
| for m in ops if isinstance(ops, list) else [ops]: | |
| m = m.to(device) if hasattr(m, 'to') else m # device | |
| m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type | |
| dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward | |
| try: | |
| flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS | |
| except: | |
| flops = 0 | |
| for _ in range(n): | |
| t[0] = time_synchronized() | |
| y = m(x) | |
| t[1] = time_synchronized() | |
| try: | |
| _ = y.sum().backward() | |
| t[2] = time_synchronized() | |
| except: # no backward method | |
| t[2] = float('nan') | |
| dtf += (t[1] - t[0]) * 1000 / n # ms per op forward | |
| dtb += (t[2] - t[1]) * 1000 / n # ms per op backward | |
| s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' | |
| s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' | |
| p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters | |
| print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') | |
| def is_parallel(model): | |
| return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) | |
| def intersect_dicts(da, db, exclude=()): | |
| # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values | |
| return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} | |
| def initialize_weights(model): | |
| for m in model.modules(): | |
| t = type(m) | |
| if t is nn.Conv2d: | |
| pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| elif t is nn.BatchNorm2d: | |
| m.eps = 1e-3 | |
| m.momentum = 0.03 | |
| elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: | |
| m.inplace = True | |
| def find_modules(model, mclass=nn.Conv2d): | |
| # Finds layer indices matching module class 'mclass' | |
| return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] | |
| def sparsity(model): | |
| # Return global model sparsity | |
| a, b = 0., 0. | |
| for p in model.parameters(): | |
| a += p.numel() | |
| b += (p == 0).sum() | |
| return b / a | |
| def prune(model, amount=0.3): | |
| # Prune model to requested global sparsity | |
| import torch.nn.utils.prune as prune | |
| print('Pruning model... ', end='') | |
| for name, m in model.named_modules(): | |
| if isinstance(m, nn.Conv2d): | |
| prune.l1_unstructured(m, name='weight', amount=amount) # prune | |
| prune.remove(m, 'weight') # make permanent | |
| print(' %.3g global sparsity' % sparsity(model)) | |
| def fuse_conv_and_bn(conv, bn): | |
| # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ | |
| fusedconv = nn.Conv2d(conv.in_channels, | |
| conv.out_channels, | |
| kernel_size=conv.kernel_size, | |
| stride=conv.stride, | |
| padding=conv.padding, | |
| groups=conv.groups, | |
| bias=True).requires_grad_(False).to(conv.weight.device) | |
| # prepare filters | |
| w_conv = conv.weight.clone().view(conv.out_channels, -1) | |
| w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) | |
| fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) | |
| # prepare spatial bias | |
| b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias | |
| b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) | |
| fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) | |
| return fusedconv | |
| def model_info(model, verbose=False, img_size=640): | |
| # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] | |
| n_p = sum(x.numel() for x in model.parameters()) # number parameters | |
| n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients | |
| if verbose: | |
| print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) | |
| for i, (name, p) in enumerate(model.named_parameters()): | |
| name = name.replace('module_list.', '') | |
| print('%5g %40s %9s %12g %20s %10.3g %10.3g' % | |
| (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) | |
| try: # FLOPS | |
| from thop import profile | |
| stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 | |
| img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input | |
| flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS | |
| img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float | |
| fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS | |
| except (ImportError, Exception): | |
| fs = '' | |
| logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") | |
| def load_classifier(name='resnet101', n=2): | |
| # Loads a pretrained model reshaped to n-class output | |
| model = torchvision.models.__dict__[name](pretrained=True) | |
| # ResNet model properties | |
| # input_size = [3, 224, 224] | |
| # input_space = 'RGB' | |
| # input_range = [0, 1] | |
| # mean = [0.485, 0.456, 0.406] | |
| # std = [0.229, 0.224, 0.225] | |
| # Reshape output to n classes | |
| filters = model.fc.weight.shape[1] | |
| model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) | |
| model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) | |
| model.fc.out_features = n | |
| return model | |
| def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) | |
| # scales img(bs,3,y,x) by ratio constrained to gs-multiple | |
| if ratio == 1.0: | |
| return img | |
| else: | |
| h, w = img.shape[2:] | |
| s = (int(h * ratio), int(w * ratio)) # new size | |
| img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize | |
| if not same_shape: # pad/crop img | |
| h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] | |
| return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean | |
| def copy_attr(a, b, include=(), exclude=()): | |
| # Copy attributes from b to a, options to only include [...] and to exclude [...] | |
| for k, v in b.__dict__.items(): | |
| if (len(include) and k not in include) or k.startswith('_') or k in exclude: | |
| continue | |
| else: | |
| setattr(a, k, v) | |
| class ModelEMA: | |
| """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models | |
| Keep a moving average of everything in the model state_dict (parameters and buffers). | |
| This is intended to allow functionality like | |
| https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage | |
| A smoothed version of the weights is necessary for some training schemes to perform well. | |
| This class is sensitive where it is initialized in the sequence of model init, | |
| GPU assignment and distributed training wrappers. | |
| """ | |
| def __init__(self, model, decay=0.9999, updates=0): | |
| # Create EMA | |
| self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA | |
| # if next(model.parameters()).device.type != 'cpu': | |
| # self.ema.half() # FP16 EMA | |
| self.updates = updates # number of EMA updates | |
| self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) | |
| for p in self.ema.parameters(): | |
| p.requires_grad_(False) | |
| def update(self, model): | |
| # Update EMA parameters | |
| with torch.no_grad(): | |
| self.updates += 1 | |
| d = self.decay(self.updates) | |
| msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict | |
| for k, v in self.ema.state_dict().items(): | |
| if v.dtype.is_floating_point: | |
| v *= d | |
| v += (1. - d) * msd[k].detach() | |
| def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): | |
| # Update EMA attributes | |
| copy_attr(self.ema, model, include, exclude) | |
| class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm): | |
| def _check_input_dim(self, input): | |
| # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc | |
| # is this method that is overwritten by the sub-class | |
| # This original goal of this method was for tensor sanity checks | |
| # If you're ok bypassing those sanity checks (eg. if you trust your inference | |
| # to provide the right dimensional inputs), then you can just use this method | |
| # for easy conversion from SyncBatchNorm | |
| # (unfortunately, SyncBatchNorm does not store the original class - if it did | |
| # we could return the one that was originally created) | |
| return | |
| def revert_sync_batchnorm(module): | |
| # this is very similar to the function that it is trying to revert: | |
| # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679 | |
| module_output = module | |
| if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm): | |
| new_cls = BatchNormXd | |
| module_output = BatchNormXd(module.num_features, | |
| module.eps, module.momentum, | |
| module.affine, | |
| module.track_running_stats) | |
| if module.affine: | |
| with torch.no_grad(): | |
| module_output.weight = module.weight | |
| module_output.bias = module.bias | |
| module_output.running_mean = module.running_mean | |
| module_output.running_var = module.running_var | |
| module_output.num_batches_tracked = module.num_batches_tracked | |
| if hasattr(module, "qconfig"): | |
| module_output.qconfig = module.qconfig | |
| for name, child in module.named_children(): | |
| module_output.add_module(name, revert_sync_batchnorm(child)) | |
| del module | |
| return module_output | |
| class TracedModel(nn.Module): | |
| def __init__(self, model=None, device=None, img_size=(640,640)): | |
| super(TracedModel, self).__init__() | |
| print(" Convert model to Traced-model... ") | |
| self.stride = model.stride | |
| self.names = model.names | |
| self.model = model | |
| self.model = revert_sync_batchnorm(self.model) | |
| self.model.to('cpu') | |
| self.model.eval() | |
| self.detect_layer = self.model.model[-1] | |
| self.model.traced = True | |
| rand_example = torch.rand(1, 3, img_size, img_size) | |
| traced_script_module = torch.jit.trace(self.model, rand_example, strict=False) | |
| #traced_script_module = torch.jit.script(self.model) | |
| traced_script_module.save("traced_model.pt") | |
| print(" traced_script_module saved! ") | |
| self.model = traced_script_module | |
| self.model.to(device) | |
| self.detect_layer.to(device) | |
| print(" model is traced! \n") | |
| def forward(self, x, augment=False, profile=False): | |
| out = self.model(x) | |
| out = self.detect_layer(out) | |
| return out | |
