import os import argparse from tempfile import NamedTemporaryFile from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain_community.document_loaders import PyPDFLoader from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter def process_pdf(api_key, pdf_path): os.environ["OPENAI_API_KEY"] = api_key questions_path = "./Prompts/summary_tool_questions.md" prompt_path = "./Prompts/summary_tool_system_prompt.md" with open(pdf_path, "rb") as file: with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: temp_pdf.write(file.read()) temp_pdf_path = temp_pdf.name loader = PyPDFLoader(temp_pdf_path) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500) splits = text_splitter.split_documents(docs) vectorstore = FAISS.from_documents( documents=splits, embedding=OpenAIEmbeddings(model="text-embedding-3-large") ) retriever = vectorstore.as_retriever(search_kwargs={"k": 10}) if os.path.exists(prompt_path): with open(prompt_path, "r") as file: system_prompt = file.read() else: raise FileNotFoundError(f"The specified file was not found: {prompt_path}") prompt = ChatPromptTemplate.from_messages( [ ("system", system_prompt), ("human", "{input}"), ] ) llm = ChatOpenAI(model="gpt-4o") question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context") rag_chain = create_retrieval_chain(retriever, question_answer_chain) if os.path.exists(questions_path): with open(questions_path, "r") as file: questions = [line.strip() for line in file.readlines() if line.strip()] else: raise FileNotFoundError(f"The specified file was not found: {questions_path}") qa_results = [] for question in questions: result = rag_chain.invoke({"input": question}) answer = result["answer"] qa_text = f"### Question: {question}\n**Answer:**\n{answer}\n" qa_results.append(qa_text) os.remove(temp_pdf_path) return qa_results if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate a summary for a single PDF.") parser.add_argument("api_key", type=str, help="OpenAI API Key") parser.add_argument("pdf_path", type=str, help="Path to the PDF file") args = parser.parse_args() try: results = process_pdf(args.api_key, args.pdf_path) markdown_text = "\n".join(results) # Define and create the output directory if it doesn't exist output_folder = "CAPS_Summaries" os.makedirs(output_folder, exist_ok=True) # Save the results to a Markdown file base_name = os.path.splitext(os.path.basename(args.pdf_path))[0] output_file_path = os.path.join(output_folder, f"{base_name}_Summary.md") with open(output_file_path, "w") as output_file: output_file.write(markdown_text) print(f"Summary saved to {output_file_path}") except Exception as e: print(f"An error occurred: {e}")