Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 16,523 Bytes
08ace8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import requests
import geopandas as gpd
import pandas as pd
from shapely.geometry import shape
API_KEY = "ea9637fd9f0c41f3e2e932faa99dfcd76f8041aa"
# Mapping dictionaries
state_abbrev_to_fips = {
"AL": "01", "AK": "02", "AZ": "04", "AR": "05", "CA": "06", "CO": "08",
"CT": "09", "DE": "10", "DC": "11", "FL": "12", "GA": "13", "HI": "15",
"ID": "16", "IL": "17", "IN": "18", "IA": "19", "KS": "20", "KY": "21",
"LA": "22", "ME": "23", "MD": "24", "MA": "25", "MI": "26", "MN": "27",
"MS": "28", "MO": "29", "MT": "30", "NE": "31", "NV": "32", "NH": "33",
"NJ": "34", "NM": "35", "NY": "36", "NC": "37", "ND": "38", "OH": "39",
"OK": "40", "OR": "41", "PA": "42", "RI": "44", "SC": "45", "SD": "46",
"TN": "47", "TX": "48", "UT": "49", "VT": "50", "VA": "51", "WA": "53",
"WV": "54", "WI": "55", "WY": "56"
}
fips_to_abbrev = {v: k for k, v in state_abbrev_to_fips.items()}
def fetch_state_data():
"""Fetch state-level Census data and return as a DataFrame."""
state_url = (
f"https://api.census.gov/data/2019/pep/population"
f"?get=NAME,POP&for=state:*&key={API_KEY}"
)
r_states = requests.get(state_url)
state_data = r_states.json()
df = pd.DataFrame(state_data[1:], columns=state_data[0])
df["POP"] = df["POP"].astype(int)
return df
def fetch_county_data():
"""Fetch county-level Census data and return as a DataFrame."""
county_url = (
f"https://api.census.gov/data/2019/pep/population"
f"?get=NAME,POP&for=county:*&key={API_KEY}"
)
r_counties = requests.get(county_url)
county_data = r_counties.json()
df = pd.DataFrame(county_data[1:], columns=county_data[0])
df["POP"] = df["POP"].astype(int)
df[['countyName', 'stateName']] = df['NAME'].str.split(',', expand=True)
df["FIPS"] = df["state"].str.zfill(2) + df["county"].str.zfill(3)
return df
def fetch_geojson(url: str):
"""Fetch the GeoJSON data from the provided URL."""
return requests.get(url).json()
def load_epa_data():
"""
Load EPA region data from the CSV file.
This version explicitly reads only the 'Region' and 'States' columns,
which prevents extra trailing commas from creating additional columns.
"""
df = pd.read_csv("epa_regions.csv", usecols=["Region", "States"])
# Force uppercase on the state abbreviations and strip whitespace
df["States"] = df["States"].str.strip().str.upper()
return df
def build_states_gdf(state_df, state_abbrev_to_fips):
"""
Build a GeoDataFrame for US states with Census data and EPA region attached.
"""
state_pop_dict = state_df.set_index("state")["POP"].to_dict()
state_name_dict = state_df.set_index("state")["NAME"].to_dict()
url = "https://raw.githubusercontent.com/python-visualization/folium/master/examples/data/us-states.json"
geo_data = fetch_geojson(url)
rows = []
for feat in geo_data["features"]:
abbrev = feat["id"].upper() # Ensure uppercase
geom = shape(feat["geometry"])
fips = state_abbrev_to_fips.get(abbrev)
if fips:
pop_val = state_pop_dict.get(fips, "No data")
name_val = state_name_dict.get(fips, "No data")
rows.append({
"geometry": geom,
"STATE_FIPS": fips,
"NAME": name_val,
"POP": pop_val
})
gdf = gpd.GeoDataFrame(rows, crs="EPSG:4326")
gdf["POP_TT"] = gdf["POP"].apply(lambda x: f"{int(x):,}" if isinstance(x, int) else "No data")
# Add state abbreviation column for merging EPA data
gdf["STATE_ABBR"] = gdf["STATE_FIPS"].map(fips_to_abbrev)
# Merge EPA data
epa_df = load_epa_data()
gdf = gdf.merge(epa_df, left_on="STATE_ABBR", right_on="States", how="left")
# Rename EPA column and ensure it's numeric
gdf.rename(columns={"Region": "EPA_REGION"}, inplace=True)
gdf["EPA_REGION"] = pd.to_numeric(gdf["EPA_REGION"], errors="coerce")
return gdf
def build_counties_gdf(county_df):
"""
Build a GeoDataFrame for US counties, simplify geometries,
and merge EPA region data.
"""
county_pop_dict = county_df.set_index("FIPS")["POP"].to_dict()
county_name_dict = county_df.set_index("FIPS")["NAME"].to_dict()
url = "https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json"
geo_data = fetch_geojson(url)
rows = []
for feat in geo_data["features"]:
fips = feat["id"]
geom = shape(feat["geometry"])
pop_val = county_pop_dict.get(fips, "No data")
name_val = county_name_dict.get(fips, "No data")
rows.append({
"geometry": geom,
"FIPS": fips,
"NAME": name_val,
"POP": pop_val
})
gdf = gpd.GeoDataFrame(rows, crs="EPSG:4326")
gdf["geometry"] = gdf["geometry"].simplify(tolerance=0.05, preserve_topology=True)
# Add state abbreviation column for merging EPA data
gdf["STATE_ABBR"] = gdf["FIPS"].str[:2].map(fips_to_abbrev)
epa_df = load_epa_data()
gdf = gdf.merge(epa_df, left_on="STATE_ABBR", right_on="States", how="left")
gdf.rename(columns={"Region": "EPA_REGION"}, inplace=True)
gdf["EPA_REGION"] = pd.to_numeric(gdf["EPA_REGION"], errors="coerce")
return gdf
def load_and_merge_caps(states_gdf):
"""
Merge state-level climate action plan data with the states GeoDataFrame
and precompute display columns.
"""
caps_df = pd.read_csv("caps_plans.csv")
caps_df["State"] = caps_df["State"].str.strip().str.upper()
caps_df["STATE_FIPS"] = caps_df["State"].map(state_abbrev_to_fips)
caps_df["plan_info"] = caps_df.apply(
lambda row: f"{row['City']}, {row['Year']}, {row['Plan Type']}", axis=1
)
grouped = caps_df.groupby("STATE_FIPS").agg(
n_caps=("Plan Type", "count"),
plan_list=("plan_info", lambda x: list(x))
).reset_index()
merged = states_gdf.merge(grouped, on="STATE_FIPS", how="left")
merged["n_caps"] = merged["n_caps"].fillna(0).astype(int)
merged["plan_list"] = merged["plan_list"].apply(lambda x: x if isinstance(x, list) else [])
if "POP_TT" not in merged.columns:
merged["POP_TT"] = merged["POP"].apply(lambda x: f"{int(x):,}" if isinstance(x, int) else "No data")
return merged
def load_and_merge_caps_county(counties_gdf):
"""
Merge county-level climate action plan data with the counties GeoDataFrame
and precompute display columns.
"""
caps_df = pd.read_csv("caps_plans.csv")
mapping_df = pd.read_csv("city_county_mapping.csv")
caps_df["State"] = caps_df["State"].str.strip().str.upper()
mapping_df["CountyKey"] = mapping_df["County"].apply(
lambda x: x.upper().split(',')[0].replace(" COUNTY", "").strip()
)
merged_caps = pd.merge(
caps_df, mapping_df,
left_on=["City", "State"],
right_on=["City", "State"],
how="left"
)
merged_caps["plan_info"] = merged_caps.apply(
lambda row: f"{row['City']}, {row['Year']}, {row['Plan Type']}", axis=1
)
merged_caps["CountyKey"] = merged_caps["County"].apply(
lambda x: x.upper().split(',')[0].replace(" COUNTY", "").strip() if pd.notnull(x) else None
)
grouped = merged_caps.groupby(["CountyKey", "State"]).agg(
n_caps=("Plan Type", "count"),
plan_list=("plan_info", lambda x: list(x))
).reset_index()
counties_gdf["STATE"] = counties_gdf["FIPS"].str[:2].map(fips_to_abbrev)
counties_gdf["CountyKey"] = counties_gdf["NAME"].apply(
lambda x: x.upper().split(',')[0].replace(" COUNTY", "").strip()
)
merged_counties = counties_gdf.merge(
grouped,
left_on=["CountyKey", "STATE"],
right_on=["CountyKey", "State"],
how="left"
)
merged_counties["n_caps"] = merged_counties["n_caps"].fillna(0).astype(int)
merged_counties["plan_list"] = merged_counties["plan_list"].apply(lambda x: x if isinstance(x, list) else [])
merged_counties["POP_TT"] = merged_counties["POP"].apply(
lambda x: f"{int(x):,}" if pd.notnull(x) and isinstance(x, (int, float)) else "No data"
)
merged_counties["FIPS_TT"] = merged_counties["FIPS"].apply(
lambda x: x.zfill(5) if isinstance(x, str) and x.isdigit() else "No data"
)
return merged_counties
def load_city_mapping():
"""Load the city mapping CSV for marker locations."""
df = pd.read_csv("city_county_mapping.csv")
df["City"] = df["City"].str.strip()
df["State"] = df["State"].str.strip().str.upper()
df["Latitude"] = pd.to_numeric(df["Latitude"], errors="coerce")
df["Longitude"] = pd.to_numeric(df["Longitude"], errors="coerce")
return df
def load_city_plans():
"""Load and group climate action plan data by city and state."""
df = pd.read_csv("caps_plans.csv")
df["City"] = df["City"].str.strip()
df["State"] = df["State"].str.strip().str.upper()
df["plan_info"] = df.apply(lambda row: f"{row['Year']}, {row['Plan Type']}", axis=1)
grouped = df.groupby(["City", "State"]).agg(plan_list=("plan_info", lambda x: list(x))).reset_index()
return grouped
def merge_nri_data(states_gdf_caps, counties_gdf_caps):
"""
Merge the NRI Future Risk Index data with the state and county GeoDataFrames.
"""
# Read in and select only the relevant columns, rounding numeric values
nri_cols = [
"STATEABBRV", "STATE", "COUNTY", "STCOFIPS",
"CFLD_MID_HIGHER_PRISKS", "CFLD_LATE_HIGHER_PRISKS",
"CFLD_MID_HIGHER_HM", "CFLD_LATE_HIGHER_HM",
"WFIR_MID_HIGHER_PRISKS", "WFIR_LATE_HIGHER_PRISKS",
"WFIR_MID_HIGHER_HM", "WFIR_LATE_HIGHER_HM",
"DRGT_MID_HIGHER_PRISKS", "DRGT_LATE_HIGHER_PRISKS",
"DRGT_MID_HIGHER_HM", "DRGT_LATE_HIGHER_HM",
"HRCN_MID_HIGHER_PRISKS", "HRCN_LATE_HIGHER_PRISKS",
"HRCN_MID_HIGHER_HM", "HRCN_LATE_HIGHER_HM",
"EXHT_L95_MID_HIGHER_PRISKS", "EXHT_L95_LATE_HIGHER_PRISKS",
"EXHT_L95_MID_HIGHER_HM", "EXHT_L95_LATE_HIGHER_HM"
]
nri_df = pd.read_excel("data/NRI Future Risk Index.xlsx")[nri_cols].round(2)
# List the risk columns (all the ones we wish to average)
risk_cols = [
"CFLD_MID_HIGHER_PRISKS", "CFLD_LATE_HIGHER_PRISKS",
"CFLD_MID_HIGHER_HM", "CFLD_LATE_HIGHER_HM",
"WFIR_MID_HIGHER_PRISKS", "WFIR_LATE_HIGHER_PRISKS",
"WFIR_MID_HIGHER_HM", "WFIR_LATE_HIGHER_HM",
"DRGT_MID_HIGHER_PRISKS", "DRGT_LATE_HIGHER_PRISKS",
"DRGT_MID_HIGHER_HM", "DRGT_LATE_HIGHER_HM",
"HRCN_MID_HIGHER_PRISKS", "HRCN_LATE_HIGHER_PRISKS",
"HRCN_MID_HIGHER_HM", "HRCN_LATE_HIGHER_HM",
"EXHT_L95_MID_HIGHER_PRISKS", "EXHT_L95_LATE_HIGHER_PRISKS",
"EXHT_L95_MID_HIGHER_HM", "EXHT_L95_LATE_HIGHER_HM"
]
# Compute the state-level means on the risk columns
grouped_states = nri_df.groupby("STATE")[risk_cols].mean().round(2)
# Convert FIPS codes to numeric to ensure proper merging
counties_gdf_caps['FIPS'] = pd.to_numeric(counties_gdf_caps['FIPS'], errors='coerce').fillna(0).astype(int)
nri_df['STCOFIPS'] = pd.to_numeric(nri_df['STCOFIPS'], errors='coerce').fillna(0).astype(int)
# Merge the aggregated state data with the states GeoDataFrame
# Here, grouped_states is indexed by state name so we merge using the index.
merged_states_gdf = states_gdf_caps.merge(grouped_states, left_on="NAME", right_index=True, how="left")
# Merge the original NRI data with the counties GeoDataFrame on the FIPS codes
merged_counties_gdf = counties_gdf_caps.merge(nri_df, left_on="FIPS", right_on="STCOFIPS", how="left")
return merged_states_gdf, merged_counties_gdf
def merge_fema_data(states_gdf_caps, counties_gdf_caps):
"""
Merge the FEMA data with the state and county GeoDataFrames.
"""
fema_df = pd.read_csv("data/fema_data.csv")
# List the FEMA numeric columns to average.
# Note: The ISTM columns are kept with their original names.
fema_cols = [
"RISK_SCORE", "RISK_SPCTL", "EAL_VALT", "SOVI_SCORE", "RESL_SCORE",
"AVLN_EALS", "AVLN_EALT", "CFLD_EALS", "CFLD_EALT", "CWAV_EALS", "CWAV_EALT",
"DRGT_EALS", "DRGT_EALT", "HAIL_EALS", "HAIL_EALT", "HWAV_EALS", "HWAV_EALT",
"HRCN_EALS", "HRCN_EALT", "ISTM_EALS", "ISTM_EALT", "LNDS_EALS", "LNDS_EALT",
"RFLD_EALS", "RFLD_EALT", "SWND_EALS", "SWND_EALT", "TRND_EALS", "TRND_EALT",
"WFIR_EALS", "WFIR_EALT", "WNTW_EALS", "WNTW_EALT"
]
# Compute the county-level means using the numeric columns
grouped_counties = fema_df.groupby("STCOFIPS")[fema_cols].mean().round(2)
# Similarly, compute state-level means using the same set of columns
grouped_states = fema_df.groupby("STATEABBRV")[fema_cols].mean().round(2)
# Merge the aggregated county data with the counties GeoDataFrame
# Here, grouped_counties is indexed by STCOFIPS so we merge on the index.
merged_counties_gdf = counties_gdf_caps.merge(grouped_counties, left_on="FIPS", right_index=True, how="left")
# Merge the aggregated state data with the states GeoDataFrame
merged_states_gdf = states_gdf_caps.merge(grouped_states, left_on="STATE_ABBR", right_index=True, how="left")
return merged_states_gdf, merged_counties_gdf
def merge_cejst_data(states_gdf_caps, counties_gdf_caps):
"""
Merge the CEJST data with the state and county GeoDataFrames.
"""
cejst_df = pd.read_csv("data/cejst.csv")
# Ensure cejst only contains the desired columns
cejst = cejst_df[['County Name',
'State/Territory',
'Share of properties at risk of flood in 30 years (percentile)',
'Share of properties at risk of flood in 30 years',
'Share of properties at risk of fire in 30 years (percentile)',
'Share of properties at risk of fire in 30 years',
'Energy burden (percentile)',
'PM2.5 in the air (percentile)',
'PM2.5 in the air',
"Share of the tract's land area that is covered by impervious surface or cropland as a percent",
'Current asthma among adults aged greater than or equal to 18 years']].round(2)
numeric_cols = cejst.select_dtypes(include=['number']).columns
# Group by county and state (county-state combination) and calculate the mean of all numeric columns.
county_state_means = cejst.groupby(['County Name', 'State/Territory'])[numeric_cols].mean().round(2).reset_index()
# Group by state only and calculate the mean of all numeric columns.
state_means = cejst.groupby('State/Territory')[numeric_cols].mean().round(2).reset_index()
# Create a new column in county_state_means that matches the format of NAME in county_data
county_state_means["NAME"] = county_state_means["County Name"] + ", " + county_state_means["State/Territory"]
# Perform the merge using the newly created NAME column
merged_counties_gdf = counties_gdf_caps.merge(county_state_means, on="NAME", how="left")
# Merge the aggregated state data with the states GeoDataFrame
merged_states_gdf = states_gdf_caps.merge(state_means, left_on="NAME", right_on="State/Territory", how="left")
return merged_states_gdf, merged_counties_gdf
if __name__ == "__main__":
# Fetch and process Census data
state_df = fetch_state_data()
county_df = fetch_county_data()
states_gdf = build_states_gdf(state_df, state_abbrev_to_fips)
counties_gdf = build_counties_gdf(county_df)
states_gdf_caps = load_and_merge_caps(states_gdf)
counties_gdf_caps = load_and_merge_caps_county(counties_gdf)
states_gdf_caps, counties_gdf_caps = merge_nri_data(states_gdf_caps, counties_gdf_caps)
states_gdf_caps, counties_gdf_caps = merge_fema_data(states_gdf_caps, counties_gdf_caps)
states_gdf_caps, counties_gdf_caps = merge_cejst_data(states_gdf_caps, counties_gdf_caps)
city_mapping_df = load_city_mapping()
city_plans_df = load_city_plans()
# Save all data as binary (pickle) files for fast loading later
state_df.to_pickle("./maps_helpers/state_df.pkl")
county_df.to_pickle("./maps_helpers/county_df.pkl")
states_gdf_caps.to_pickle("./maps_helpers/states_gdf_caps.pkl")
counties_gdf_caps.to_pickle("./maps_helpers/counties_gdf_caps.pkl")
city_mapping_df.to_pickle("./maps_helpers/city_mapping_df.pkl")
city_plans_df.to_pickle("./maps_helpers/city_plans_df.pkl")
|