import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from utils.arch_utils import LayerNorm2d def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) def make_layer(block, n_layers): layers = [] for _ in range(n_layers): layers.append(block()) return nn.Sequential(*layers) class ResidualBlock_noBN(nn.Module): '''Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| ''' def __init__(self, nf=64): super(ResidualBlock_noBN, self).__init__() self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) # initialization initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = F.relu(self.conv1(x), inplace=True) out = self.conv2(out) return identity + out class ResidualBlock(nn.Module): '''Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| ''' def __init__(self, nf=64): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.bn = nn.BatchNorm2d(nf) self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) # initialization initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = F.relu(self.bn(self.conv1(x)), inplace=True) out = self.conv2(out) return identity + out ########################################################################################################### class SimpleGate(nn.Module): def forward(self, x): x1, x2 = x.chunk(2, dim=1) return x1 * x2 class SGE(nn.Module): def __init__(self, dw_channel): super().__init__() self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True) def forward(self, x): x1, x2 = x.chunk(2, dim=1) x1 = self.dwc(x1) return x1 * x2 class SpaBlock(nn.Module): def __init__(self, nc, DW_Expand = 2, FFN_Expand=2, drop_out_rate=0.): super(SpaBlock, self).__init__() dw_channel = nc * DW_Expand self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) # the dconv self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) # Simplified Channel Attention self.sca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * nc self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(nc) self.norm2 = LayerNorm2d(nc) self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) def forward(self, x): x = self.norm1(x) # size [B, C, H, W] x = self.conv1(x) # size [B, 2*C, H, W] x = self.conv2(x) # size [B, 2*C, H, W] x = self.sg(x) # size [B, C, H, W] x = x * self.sca(x) # size [B, C, H, W] x = self.conv3(x) # size [B, C, H, W] x = self.dropout1(x) y = x + x * self.beta # size [B, C, H, W] x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W] x = self.sg(x) # size [B, C, H, W] x = self.conv5(x) # size [B, C, H, W] x = self.dropout2(x) return y + x * self.gamma class FreBlock(nn.Module): def __init__(self, nc): super(FreBlock, self).__init__() self.fpre = nn.Conv2d(nc, nc, 1, 1, 0) self.process1 = nn.Sequential( nn.Conv2d(nc, nc, 1, 1, 0), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(nc, nc, 1, 1, 0)) self.process2 = nn.Sequential( nn.Conv2d(nc, nc, 1, 1, 0), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(nc, nc, 1, 1, 0)) def forward(self, x): _, _, H, W = x.shape x_freq = torch.fft.rfft2(self.fpre(x), norm='backward') mag = torch.abs(x_freq) pha = torch.angle(x_freq) mag = self.process1(mag) pha = self.process2(pha) real = mag * torch.cos(pha) imag = mag * torch.sin(pha) x_out = torch.complex(real, imag) x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward') return x_out+x class SFBlock(nn.Module): def __init__(self, nc, DW_Expand = 2, FFN_Expand=2): super(SFBlock, self).__init__() dw_channel = nc * DW_Expand self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) # the dconv self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.fatt = FreBlock(dw_channel // 2) self.sge = SGE(dw_channel) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * nc self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(nc) self.norm2 = LayerNorm2d(nc) self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) def forward(self, x): x = self.norm1(x) # size [B, C, H, W] x = self.conv1(x) # size [B, 2*C, H, W] x = self.conv2(x) # size [B, 2*C, H, W] x = self.sge(x) # size [B, C, H, W] x = self.fatt(x) x = self.conv3(x) # size [B, C, H, W] y = x + x * self.beta # size [B, C, H, W] x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W] x = self.sg(x) # size [B, C, H, W] x = self.conv5(x) # size [B, C, H, W] return y + x * self.gamma class ProcessBlock(nn.Module): def __init__(self, in_nc, spatial = True): super(ProcessBlock,self).__init__() self.spatial = spatial self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity() self.frequency_process = FreBlock(in_nc) self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0) def forward(self, x): xori = x x_freq = self.frequency_process(x) x_spatial = self.spatial_process(x) xcat = torch.cat([x_spatial,x_freq],1) x_out = self.cat(xcat) if self.spatial else self.cat(x_freq) return x_out+xori class SFNet(nn.Module): def __init__(self, nc,n=5): super(SFNet,self).__init__() self.list_block = list() for index in range(n): self.list_block.append(ProcessBlock(nc,spatial=False)) self.block = nn.Sequential(*self.list_block) def forward(self, x): x_ori = x x_out = self.block(x_ori) xout = x_ori + x_out return xout class AmplitudeNet_skip(nn.Module): def __init__(self, nc,n=1): super(AmplitudeNet_skip,self).__init__() self.conv_init = nn.Conv2d(3, nc, 1, 1, 0) self.conv1 = SFBlock (nc) self.conv2 = SFBlock (nc) self.conv3 = SFBlock (nc) self.conv_out = nn.Conv2d(nc, 3, 1, 1, 0) def forward(self, x): x_lr = F.interpolate(x, scale_factor=0.5, mode='bilinear') # Resize and Normalize SNR map x_lr = self.conv_init(x_lr) x_lr = self.conv1(x_lr) x_lr = self.conv2(x_lr) x_lr = self.conv3(x_lr) x_lr = self.conv_out(x_lr) xout = F.interpolate(x_lr, scale_factor=2, mode='bilinear') # Resize and Normalize SNR map return xout ########################################################################################################### class SG(nn.Module): def forward(self, x): x1, x2 = x.chunk(2, dim=1) return x1 * x2 class SGE(nn.Module): def __init__(self, dw_channel): super().__init__() self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True) def forward(self, x): x1, x2 = x.chunk(2, dim=1) x1 = self.dwc(x1) return x1 * x2