Ci-Dave commited on
Commit
ad53465
ยท
1 Parent(s): c85fd38

Added files

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .venv/
FIFA_Processed_Data.csv ADDED
The diff for this file is too large to render. See raw diff
 
FIFA_Standardized_Data.csv ADDED
The diff for this file is too large to render. See raw diff
 
FIFA_Standardized_Data.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1e5a81d1da3e7e335ef9238fb3e7258e29f1523d1c9b017abd681e690be5aa6
3
+ size 2332218
app.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import joblib
3
+ import pandas as pd
4
+ import os
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+ from sklearn.decomposition import PCA
8
+ from datasets import load_dataset
9
+
10
+ def load_clustered_data():
11
+ df = joblib.load("FIFA_Standardized_Data.joblib")
12
+
13
+ # Ensure required clustering columns exist
14
+ required_columns = ["DBSCAN_Cluster", "PCA1", "PCA2", "TSNE1", "TSNE2"]
15
+ missing_columns = [col for col in required_columns if col not in df.columns]
16
+
17
+ if missing_columns:
18
+ st.error(f"โš ๏ธ Missing columns in dataset: {', '.join(missing_columns)}. Please re-run clustering and save the dataset.")
19
+ return None
20
+
21
+ return df
22
+
23
+ def load_fifa_dataset():
24
+ dataset = load_dataset("Ci-Dave/FIFA2019")
25
+ df = pd.DataFrame(dataset["train"])
26
+ df.rename(columns={"ShortPassing": "Passing", "StandingTackle": "Defending", "Strength": "Physical"}, inplace=True)
27
+ return df
28
+
29
+ def home_page():
30
+ st.title("โšฝ FIFA 2019 Clustering Analysis")
31
+ st.write("""
32
+ This Streamlit app demonstrates unsupervised learning using **clustering techniques** on the FIFA 2019 dataset.
33
+
34
+ **Key Features:**
35
+ - Displays the dataset
36
+ - Allows user interaction for visualizing clusters
37
+ - Uses models like **DBSCAN, PCA, and t-SNE**
38
+ """)
39
+
40
+ def dataset_page():
41
+ st.title("๐Ÿ“Š FIFA 2019 Dataset")
42
+ df = load_fifa_dataset()
43
+ st.dataframe(df)
44
+
45
+ def visualization_page():
46
+ st.title("๐Ÿ“ˆ Clustering Visualization")
47
+ df = load_clustered_data()
48
+
49
+ if df is None:
50
+ return # Stop execution if dataset is missing required columns
51
+
52
+ clustering_algorithms = ["DBSCAN", "PCA", "t-SNE"]
53
+ selected_algo = st.selectbox("Choose a Clustering Algorithm:", clustering_algorithms)
54
+
55
+ if selected_algo == "DBSCAN":
56
+ st.subheader("DBSCAN Clustering")
57
+ plt.figure(figsize=(8,5))
58
+ sns.scatterplot(x=df["PCA1"], y=df["PCA2"], hue=df["DBSCAN_Cluster"], palette="coolwarm")
59
+ st.pyplot(plt)
60
+
61
+ elif selected_algo == "PCA":
62
+ st.subheader("PCA Visualization")
63
+ pca = PCA(n_components=2)
64
+ pca_result = pca.fit_transform(df.iloc[:, :-1])
65
+ plt.scatter(pca_result[:, 0], pca_result[:, 1], c=df["DBSCAN_Cluster"], cmap="plasma")
66
+ plt.xlabel("PCA Component 1")
67
+ plt.ylabel("PCA Component 2")
68
+ st.pyplot(plt)
69
+
70
+ elif selected_algo == "t-SNE":
71
+ st.subheader("t-SNE Visualization")
72
+ plt.figure(figsize=(8,5))
73
+ sns.scatterplot(x=df["TSNE1"], y=df["TSNE2"], hue=df["DBSCAN_Cluster"], palette="coolwarm")
74
+ st.pyplot(plt)
75
+
76
+ def main():
77
+ st.sidebar.title("Navigation")
78
+ pages = {
79
+ "๐Ÿ  Home": home_page,
80
+ "๐Ÿ“Š Dataset": dataset_page,
81
+ "๐Ÿ“ˆ Visualizations": visualization_page,
82
+ }
83
+
84
+ choice = st.sidebar.radio("Go to", list(pages.keys()))
85
+ pages[choice]()
86
+
87
+ if __name__ == "__main__":
88
+ main()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ pandas
2
+ streamlit
3
+ numpy
4
+ matplotlib
5
+ seaborn
6
+ scikit-learn
7
+ joblib