Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import joblib
|
4 |
+
import numpy as np
|
5 |
+
from skimage.feature import hog
|
6 |
+
import tensorflow as tf
|
7 |
+
from tensorflow import keras
|
8 |
+
from tensorflow.keras import layers
|
9 |
+
from transformers import AutoTokenizer, AutoModelForImageTextToText
|
10 |
+
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
|
11 |
+
import torch
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
# Paths to your models
|
15 |
+
MODEL_TYPES = ["HOG & Logistic Regression","CRNN CTC","Fine Tuned TrOCR"]
|
16 |
+
|
17 |
+
clf_hog = joblib.load('/content/HOG_LogRes.pkl')
|
18 |
+
|
19 |
+
clf_crnn = tf.keras.models.load_model('/content/crnn_ctc.keras')
|
20 |
+
num_to_char = joblib.load('./decoder.joblib')
|
21 |
+
|
22 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
23 |
+
clf_trocr = AutoModelForImageTextToText.from_pretrained("ChronoStellar/TrOCR_IndonesianLPR")
|
24 |
+
|
25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
clf_trocr.to(device)
|
27 |
+
|
28 |
+
# Preprocessing and prediction functions for each model
|
29 |
+
def ocr_model_1(file_path):
|
30 |
+
im = cv2.imread(file_path)
|
31 |
+
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
|
32 |
+
ret, im_th = cv2.threshold(im_gray, 120, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
33 |
+
ctrs, hier = cv2.findContours(im_th, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
34 |
+
bboxes = [cv2.boundingRect(c) for c in ctrs]
|
35 |
+
sorted_bboxes = sorted(bboxes, key=lambda b: b[0])
|
36 |
+
|
37 |
+
plate_char = []
|
38 |
+
image_height, image_width = im.shape[:2]
|
39 |
+
height_threshold = image_height * 0.3
|
40 |
+
width_threshold = image_width * 0.3
|
41 |
+
|
42 |
+
for num, i_bboxes in enumerate(sorted_bboxes):
|
43 |
+
[x, y, w, h] = i_bboxes
|
44 |
+
if h > height_threshold and w < width_threshold:
|
45 |
+
roi = im_gray[y:y + h, x:x + w]
|
46 |
+
roi = cv2.resize(roi, (64, 128), interpolation=cv2.INTER_AREA)
|
47 |
+
roi_hog_fd = hog(roi, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(1, 1))
|
48 |
+
nbr = clf_hog.predict(np.array([roi_hog_fd]))
|
49 |
+
plate_char.append(str(nbr[0]))
|
50 |
+
|
51 |
+
return ''.join(plate_char)
|
52 |
+
|
53 |
+
max_length = 9
|
54 |
+
img_width = 200
|
55 |
+
img_height = 50
|
56 |
+
|
57 |
+
def decode_batch_predictions(pred):
|
58 |
+
input_len = np.ones(pred.shape[0]) * pred.shape[1]
|
59 |
+
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][
|
60 |
+
:, :max_length
|
61 |
+
]
|
62 |
+
output_text = []
|
63 |
+
for res in results:
|
64 |
+
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
|
65 |
+
res = res.replace('[UNK]', '')
|
66 |
+
output_text.append(res)
|
67 |
+
return output_text
|
68 |
+
|
69 |
+
def ocr_model_2(file_path):
|
70 |
+
img = tf.io.read_file(file_path)
|
71 |
+
img = tf.io.decode_png(img, channels=1)
|
72 |
+
img = tf.image.convert_image_dtype(img, tf.float32)
|
73 |
+
img = tf.image.resize(img, [img_height, img_width])
|
74 |
+
img = tf.transpose(img, perm=[1, 0, 2])
|
75 |
+
img = tf.expand_dims(img, axis=0)
|
76 |
+
preds = clf_crnn.predict(img)
|
77 |
+
pred_text = decode_batch_predictions(preds)
|
78 |
+
return pred_text[0]
|
79 |
+
|
80 |
+
|
81 |
+
def ocr_model_3(file_path):
|
82 |
+
pil_image = Image.open(file_path).convert("RGB")
|
83 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
84 |
+
pixel_values = pixel_values.to(device)
|
85 |
+
clf_trocr.eval()
|
86 |
+
with torch.no_grad():
|
87 |
+
generated_ids = clf_trocr.generate(pixel_values)
|
88 |
+
predicted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
89 |
+
return predicted_text
|
90 |
+
|
91 |
+
|
92 |
+
# Master OCR function that chooses the appropriate pipeline
|
93 |
+
def ocr(file_path, model_name):
|
94 |
+
if model_name == MODEL_TYPES[0]:
|
95 |
+
return ocr_model_1(file_path)
|
96 |
+
elif model_name == MODEL_TYPES[1]:
|
97 |
+
return ocr_model_2(file_path)
|
98 |
+
elif model_name == MODEL_TYPES[2]:
|
99 |
+
return ocr_model_3(file_path)
|
100 |
+
|
101 |
+
# Create Gradio interface
|
102 |
+
interface = gr.Interface(
|
103 |
+
fn=ocr,
|
104 |
+
inputs=[
|
105 |
+
gr.Image(type="filepath"),
|
106 |
+
gr.Dropdown(choices=MODEL_TYPES, label="Choose Model")
|
107 |
+
],
|
108 |
+
outputs=gr.Textbox(label="Predicted License Plate"),
|
109 |
+
title="Automatic License Plate Recognition",
|
110 |
+
description="Provide the file path of a license plate image, choose a model, and the system will predict the text on it. These Models are all trained on the same dataset, one model might be better compared to the other",
|
111 |
+
examples=[
|
112 |
+
['/content/B8837NR.jpg', ''],
|
113 |
+
['/content/E5105OD.jpg', '']
|
114 |
+
]
|
115 |
+
)
|
116 |
+
|
117 |
+
# Launch the Gradio app
|
118 |
+
interface.launch()
|