|
import gradio as gr |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.preprocessing import image |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
model = load_model("Model_1.keras") |
|
|
|
|
|
def predict_image(img): |
|
img = img.resize((256, 256)) |
|
img_array = np.array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
prediction = model.predict(img_array) |
|
class_names = ["Fake","Real"] |
|
predicted_class = np.argmax(prediction[0]) |
|
confidence = prediction[0][predicted_class] |
|
return f"Prediction: {class_names[predicted_class]} (Confidence: {confidence:.2f})" |
|
|
|
interface = gr.Interface( |
|
fn=predict_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs="text", |
|
title="Détection d'images générées par l'IA" |
|
) |
|
|
|
|
|
interface.launch("share=True") |
|
|