File size: 1,586 Bytes
cae3cb9
6663cb2
018fb30
 
 
f7493dd
037c950
1f5e9cb
037c950
008f20f
037c950
 
 
018fb30
 
 
38e2fac
cbed288
c7297e1
f8472cb
c7297e1
18cb8f3
32b2f7d
e181ae7
 
 
 
f8472cb
037c950
e181ae7
 
018fb30
68b31c9
 
 
 
 
018fb30
68b31c9
037c950
 
68b31c9
 
018fb30
 
037c950
 
018fb30
 
 
e181ae7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os 
#!pip install -q gradio langchain pypdf chromadb
import gradio as gr
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings

# Use Hugging Face Inference API embeddings
inference_api_key = os.environ['HF']
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
    api_key=inference_api_key,
    model_name="sentence-transformers/all-MiniLM-l6-v2"
)

# Load and process the PDF files
loader = PyPDFLoader("./new_papers/ALiBi.pdf")
documents = loader.load()
print("-----------")
print(documents[0])
print("-----------")


# Extract the embedding arrays from the PDF documents
embeddings = []
for doc in documents:
    embeddings.extend(doc['embeddings'])

# Create Chroma vector store for API embeddings
api_db = Chroma.from_texts(embeddings, api_hf_embeddings, collection_name="api-collection")
        

# Define the PDF retrieval function
def pdf_retrieval(query):
    # Run the query through the retriever
    response = api_db.similarity_search(query)
    return response

# Create Gradio interface for the API retriever
# Create Gradio interface for the API retriever
api_tool = gr.Interface(
    fn=pdf_retrieval,
    inputs=[gr.Textbox()],
    outputs=gr.Textbox(),
    live=True,
    title="API PDF Retrieval Tool",
    description="This tool indexes PDF documents and retrieves relevant answers based on a given query (HF Inference API Embeddings).",
)

# Launch the Gradio interface
#api_tool.launch()