Spaces:
Sleeping
Sleeping
Upload 9 files
Browse files- Dockerfile +45 -0
- constants.py +127 -0
- gitignore +1 -0
- main.py +96 -0
- model.py +25 -0
- pyproject.toml +6 -0
- requirements.txt +8 -0
- string_to_notes.py +124 -0
- utils.py +173 -0
Dockerfile
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM ubuntu:20.04
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
ENV SYSTEM=spaces
|
| 6 |
+
ENV SPACE_ID=juancopi81/multitrack-midi-music-generator
|
| 7 |
+
|
| 8 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 9 |
+
|
| 10 |
+
# Preconfigure tzdata
|
| 11 |
+
RUN DEBIAN_FRONTEND="noninteractive" apt-get -qq update && \
|
| 12 |
+
DEBIAN_FRONTEND="noninteractive" apt-get install -y tzdata
|
| 13 |
+
|
| 14 |
+
RUN apt-get update -qq && \
|
| 15 |
+
apt-get install -qq python3-pip build-essential libasound2-dev libjack-dev wget cmake pkg-config libglib2.0-dev ffmpeg
|
| 16 |
+
|
| 17 |
+
# Download libfluidsynth source
|
| 18 |
+
RUN wget https://github.com/FluidSynth/fluidsynth/archive/refs/tags/v2.3.3.tar.gz && \
|
| 19 |
+
tar xzf v2.3.3.tar.gz && \
|
| 20 |
+
cd fluidsynth-2.3.3 && \
|
| 21 |
+
mkdir build && \
|
| 22 |
+
cd build && \
|
| 23 |
+
cmake .. && \
|
| 24 |
+
make && \
|
| 25 |
+
make install && \
|
| 26 |
+
cd ../../ && \
|
| 27 |
+
rm -rf fluidsynth-2.3.3 v2.3.3.tar.gz
|
| 28 |
+
|
| 29 |
+
ENV LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}
|
| 30 |
+
RUN ldconfig
|
| 31 |
+
|
| 32 |
+
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 33 |
+
|
| 34 |
+
RUN useradd -m -u 1000 user
|
| 35 |
+
|
| 36 |
+
USER user
|
| 37 |
+
|
| 38 |
+
ENV HOME=/home/user \
|
| 39 |
+
PATH=/home/user/.local/bin:$PATH
|
| 40 |
+
|
| 41 |
+
WORKDIR $HOME/app
|
| 42 |
+
|
| 43 |
+
COPY --chown=user . $HOME/app
|
| 44 |
+
|
| 45 |
+
CMD ["python3", "main.py"]
|
constants.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
SAMPLE_RATE = 44100
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
GM_INSTRUMENTS = [
|
| 5 |
+
"Acoustic Grand Piano",
|
| 6 |
+
"Bright Acoustic Piano",
|
| 7 |
+
"Electric Grand Piano",
|
| 8 |
+
"Honky-tonk Piano",
|
| 9 |
+
"Electric Piano 1",
|
| 10 |
+
"Electric Piano 2",
|
| 11 |
+
"Harpsichord",
|
| 12 |
+
"Clavi",
|
| 13 |
+
"Celesta",
|
| 14 |
+
"Glockenspiel",
|
| 15 |
+
"Music Box",
|
| 16 |
+
"Vibraphone",
|
| 17 |
+
"Marimba",
|
| 18 |
+
"Xylophone",
|
| 19 |
+
"Tubular Bells",
|
| 20 |
+
"Dulcimer",
|
| 21 |
+
"Drawbar Organ",
|
| 22 |
+
"Percussive Organ",
|
| 23 |
+
"Rock Organ",
|
| 24 |
+
"Church Organ",
|
| 25 |
+
"Reed Organ",
|
| 26 |
+
"Accordion",
|
| 27 |
+
"Harmonica",
|
| 28 |
+
"Tango Accordion",
|
| 29 |
+
"Acoustic Guitar (nylon)",
|
| 30 |
+
"Acoustic Guitar (steel)",
|
| 31 |
+
"Electric Guitar (jazz)",
|
| 32 |
+
"Electric Guitar (clean)",
|
| 33 |
+
"Electric Guitar (muted)",
|
| 34 |
+
"Overdriven Guitar",
|
| 35 |
+
"Distortion Guitar",
|
| 36 |
+
"Guitar Harmonics",
|
| 37 |
+
"Acoustic Bass",
|
| 38 |
+
"Electric Bass (finger)",
|
| 39 |
+
"Electric Bass (pick)",
|
| 40 |
+
"Fretless Bass",
|
| 41 |
+
"Slap Bass 1",
|
| 42 |
+
"Slap Bass 2",
|
| 43 |
+
"Synth Bass 1",
|
| 44 |
+
"Synth Bass 2",
|
| 45 |
+
"Violin",
|
| 46 |
+
"Viola",
|
| 47 |
+
"Cello",
|
| 48 |
+
"Contrabass",
|
| 49 |
+
"Tremolo Strings",
|
| 50 |
+
"Pizzicato Strings",
|
| 51 |
+
"Orchestral Harp",
|
| 52 |
+
"Timpani",
|
| 53 |
+
"String Ensemble 1",
|
| 54 |
+
"String Ensemble 2",
|
| 55 |
+
"Synth Strings 1",
|
| 56 |
+
"Synth Strings 2",
|
| 57 |
+
"Choir Aahs",
|
| 58 |
+
"Voice Oohs",
|
| 59 |
+
"Synth Choir",
|
| 60 |
+
"Orchestra Hit",
|
| 61 |
+
"Trumpet",
|
| 62 |
+
"Trombone",
|
| 63 |
+
"Tuba",
|
| 64 |
+
"Muted Trumpet",
|
| 65 |
+
"French Horn",
|
| 66 |
+
"Brass Section",
|
| 67 |
+
"Synth Brass 1",
|
| 68 |
+
"Synth Brass 2",
|
| 69 |
+
"Soprano Sax",
|
| 70 |
+
"Alto Sax",
|
| 71 |
+
"Tenor Sax",
|
| 72 |
+
"Baritone Sax",
|
| 73 |
+
"Oboe",
|
| 74 |
+
"English Horn",
|
| 75 |
+
"Bassoon",
|
| 76 |
+
"Clarinet",
|
| 77 |
+
"Piccolo",
|
| 78 |
+
"Flute",
|
| 79 |
+
"Recorder",
|
| 80 |
+
"Pan Flute",
|
| 81 |
+
"Blown Bottle",
|
| 82 |
+
"Shakuhachi",
|
| 83 |
+
"Whistle",
|
| 84 |
+
"Ocarina",
|
| 85 |
+
"Lead 1 (square)",
|
| 86 |
+
"Lead 2 (sawtooth)",
|
| 87 |
+
"Lead 4 (chiff)",
|
| 88 |
+
"Lead 5 (charang)",
|
| 89 |
+
"Lead 6 (voice)",
|
| 90 |
+
"Lead 7 (fifths)",
|
| 91 |
+
"Lead 8 (bass + lead)",
|
| 92 |
+
"Pad 1 (new age)",
|
| 93 |
+
"Pad 2 (warm)",
|
| 94 |
+
"Pad 3 (polysynth)",
|
| 95 |
+
"Pad 4 (choir)",
|
| 96 |
+
"Pad 5 (bowed)",
|
| 97 |
+
"Pad 6 (metallic)",
|
| 98 |
+
"Pad 7 (halo)",
|
| 99 |
+
"Pad 8 (sweep)",
|
| 100 |
+
"FX 1 (rain)",
|
| 101 |
+
"FX 2 (soundtrack)",
|
| 102 |
+
"FX 3 (crystal)",
|
| 103 |
+
"FX 4 (atmosphere)",
|
| 104 |
+
"FX 5 (brightness)",
|
| 105 |
+
"FX 7 (echoes)",
|
| 106 |
+
"FX 8 (sci-fi)",
|
| 107 |
+
"Koto",
|
| 108 |
+
"Kalimba",
|
| 109 |
+
"Bagpipe",
|
| 110 |
+
"Fiddle",
|
| 111 |
+
"Shanai",
|
| 112 |
+
"Tinkle Bell",
|
| 113 |
+
"Agogo",
|
| 114 |
+
"Steel Drums",
|
| 115 |
+
"Woodblock",
|
| 116 |
+
"Taiko Drum",
|
| 117 |
+
"Melodic Tom",
|
| 118 |
+
"Synth Drum",
|
| 119 |
+
"Reverse Cymbal",
|
| 120 |
+
"Guitar Fret Noise",
|
| 121 |
+
"Breath Noise",
|
| 122 |
+
"Seashore",
|
| 123 |
+
"Bird Tweet",
|
| 124 |
+
"Telephone Ring",
|
| 125 |
+
"Helicopter",
|
| 126 |
+
"Applause",
|
| 127 |
+
]
|
gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
env/
|
main.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from utils import (
|
| 6 |
+
generate_song,
|
| 7 |
+
change_tempo,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
| 12 |
+
|
| 13 |
+
DESCRIPTION = """
|
| 14 |
+
<h1>🎵 Multitrack Music Generator 🎶</h1>
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
genres = ["ROCK", "POP", "JAZZ", "RANDOM"]
|
| 18 |
+
|
| 19 |
+
demo = gr.Blocks()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def run():
|
| 23 |
+
with demo:
|
| 24 |
+
gr.HTML(DESCRIPTION)
|
| 25 |
+
with gr.Row():
|
| 26 |
+
with gr.Column():
|
| 27 |
+
temp = gr.Slider(
|
| 28 |
+
minimum=0, maximum=1, step=0.05, value=0.85, label="Temperature"
|
| 29 |
+
)
|
| 30 |
+
genre = gr.Dropdown(
|
| 31 |
+
choices=genres, value="POP", label="Select the genre"
|
| 32 |
+
)
|
| 33 |
+
with gr.Row():
|
| 34 |
+
btn_from_scratch = gr.Button("Start")
|
| 35 |
+
btn_continue = gr.Button("Generate More")
|
| 36 |
+
with gr.Column():
|
| 37 |
+
with gr.Group():
|
| 38 |
+
audio_output = gr.Video(show_share_button=True)
|
| 39 |
+
midi_file = gr.File()
|
| 40 |
+
with gr.Row():
|
| 41 |
+
qpm = gr.Slider(
|
| 42 |
+
minimum=60, maximum=140, step=10, value=120, label="Tempo"
|
| 43 |
+
)
|
| 44 |
+
btn_qpm = gr.Button("Change Tempo")
|
| 45 |
+
with gr.Row():
|
| 46 |
+
with gr.Column():
|
| 47 |
+
plot_output = gr.Plot()
|
| 48 |
+
with gr.Column():
|
| 49 |
+
instruments_output = gr.Markdown("# List of generated instruments")
|
| 50 |
+
with gr.Row():
|
| 51 |
+
text_sequence = gr.Text()
|
| 52 |
+
empty_sequence = gr.Text(visible=False)
|
| 53 |
+
with gr.Row():
|
| 54 |
+
num_tokens = gr.Text(visible=False)
|
| 55 |
+
btn_from_scratch.click(
|
| 56 |
+
fn=generate_song,
|
| 57 |
+
inputs=[genre, temp, empty_sequence, qpm],
|
| 58 |
+
outputs=[
|
| 59 |
+
audio_output,
|
| 60 |
+
midi_file,
|
| 61 |
+
plot_output,
|
| 62 |
+
instruments_output,
|
| 63 |
+
text_sequence,
|
| 64 |
+
num_tokens,
|
| 65 |
+
],
|
| 66 |
+
)
|
| 67 |
+
btn_continue.click(
|
| 68 |
+
fn=generate_song,
|
| 69 |
+
inputs=[genre, temp, text_sequence, qpm],
|
| 70 |
+
outputs=[
|
| 71 |
+
audio_output,
|
| 72 |
+
midi_file,
|
| 73 |
+
plot_output,
|
| 74 |
+
instruments_output,
|
| 75 |
+
text_sequence,
|
| 76 |
+
num_tokens,
|
| 77 |
+
],
|
| 78 |
+
)
|
| 79 |
+
btn_qpm.click(
|
| 80 |
+
fn=change_tempo,
|
| 81 |
+
inputs=[text_sequence, qpm],
|
| 82 |
+
outputs=[
|
| 83 |
+
audio_output,
|
| 84 |
+
midi_file,
|
| 85 |
+
plot_output,
|
| 86 |
+
instruments_output,
|
| 87 |
+
text_sequence,
|
| 88 |
+
num_tokens,
|
| 89 |
+
],
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
run()
|
model.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
tokenizer = None
|
| 6 |
+
model = None
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def get_model_and_tokenizer() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
| 10 |
+
|
| 11 |
+
global model, tokenizer
|
| 12 |
+
if model is None or tokenizer is None:
|
| 13 |
+
# Set device
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
# Load the tokenizer and the model
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained("juancopi81/lmd_8bars_tokenizer")
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
+
"juancopi81/lmd-8bars-2048-epochs40_v4"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Move model to device
|
| 23 |
+
model = model.to(device)
|
| 24 |
+
|
| 25 |
+
return model, tokenizer
|
pyproject.toml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.black]
|
| 2 |
+
exclude = '''
|
| 3 |
+
(
|
| 4 |
+
/env
|
| 5 |
+
)
|
| 6 |
+
'''
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
bokeh==2.4.3
|
| 3 |
+
note-seq==0.0.5
|
| 4 |
+
matplotlib
|
| 5 |
+
transformers
|
| 6 |
+
pyfluidsynth==1.3.0
|
| 7 |
+
torch
|
| 8 |
+
pydantic==2.0.3
|
string_to_notes.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
from note_seq.protobuf.music_pb2 import NoteSequence
|
| 4 |
+
from note_seq.constants import STANDARD_PPQ
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def token_sequence_to_note_sequence(
|
| 8 |
+
token_sequence: str,
|
| 9 |
+
qpm: float = 120.0,
|
| 10 |
+
use_program: bool = True,
|
| 11 |
+
use_drums: bool = True,
|
| 12 |
+
instrument_mapper: Optional[dict] = None,
|
| 13 |
+
only_piano: bool = False,
|
| 14 |
+
) -> NoteSequence:
|
| 15 |
+
|
| 16 |
+
if isinstance(token_sequence, str):
|
| 17 |
+
token_sequence = token_sequence.split()
|
| 18 |
+
|
| 19 |
+
note_sequence = empty_note_sequence(qpm)
|
| 20 |
+
|
| 21 |
+
# Compute note and bar lengths based on the provided QPM
|
| 22 |
+
note_length_16th = 0.25 * 60 / qpm
|
| 23 |
+
bar_length = 4.0 * 60 / qpm
|
| 24 |
+
|
| 25 |
+
# Render all notes.
|
| 26 |
+
current_program = 1
|
| 27 |
+
current_is_drum = False
|
| 28 |
+
current_instrument = 0
|
| 29 |
+
track_count = 0
|
| 30 |
+
for _, token in enumerate(token_sequence):
|
| 31 |
+
if token == "PIECE_START":
|
| 32 |
+
pass
|
| 33 |
+
elif token == "PIECE_END":
|
| 34 |
+
break
|
| 35 |
+
elif token == "TRACK_START":
|
| 36 |
+
current_bar_index = 0
|
| 37 |
+
track_count += 1
|
| 38 |
+
pass
|
| 39 |
+
elif token == "TRACK_END":
|
| 40 |
+
pass
|
| 41 |
+
elif token == "KEYS_START":
|
| 42 |
+
pass
|
| 43 |
+
elif token == "KEYS_END":
|
| 44 |
+
pass
|
| 45 |
+
elif token.startswith("KEY="):
|
| 46 |
+
pass
|
| 47 |
+
elif token.startswith("INST"):
|
| 48 |
+
instrument = token.split("=")[-1]
|
| 49 |
+
if instrument != "DRUMS" and use_program:
|
| 50 |
+
if instrument_mapper is not None:
|
| 51 |
+
if instrument in instrument_mapper:
|
| 52 |
+
instrument = instrument_mapper[instrument]
|
| 53 |
+
current_program = int(instrument)
|
| 54 |
+
current_instrument = track_count
|
| 55 |
+
current_is_drum = False
|
| 56 |
+
if instrument == "DRUMS" and use_drums:
|
| 57 |
+
current_instrument = 0
|
| 58 |
+
current_program = 0
|
| 59 |
+
current_is_drum = True
|
| 60 |
+
elif token == "BAR_START":
|
| 61 |
+
current_time = current_bar_index * bar_length
|
| 62 |
+
current_notes = {}
|
| 63 |
+
elif token == "BAR_END":
|
| 64 |
+
current_bar_index += 1
|
| 65 |
+
pass
|
| 66 |
+
elif token.startswith("NOTE_ON"):
|
| 67 |
+
pitch = int(token.split("=")[-1])
|
| 68 |
+
note = note_sequence.notes.add()
|
| 69 |
+
note.start_time = current_time
|
| 70 |
+
note.end_time = current_time + 4 * note_length_16th
|
| 71 |
+
note.pitch = pitch
|
| 72 |
+
note.instrument = current_instrument
|
| 73 |
+
note.program = current_program
|
| 74 |
+
note.velocity = 80
|
| 75 |
+
note.is_drum = current_is_drum
|
| 76 |
+
current_notes[pitch] = note
|
| 77 |
+
elif token.startswith("NOTE_OFF"):
|
| 78 |
+
pitch = int(token.split("=")[-1])
|
| 79 |
+
if pitch in current_notes:
|
| 80 |
+
note = current_notes[pitch]
|
| 81 |
+
note.end_time = current_time
|
| 82 |
+
elif token.startswith("TIME_DELTA"):
|
| 83 |
+
delta = float(token.split("=")[-1]) * note_length_16th
|
| 84 |
+
current_time += delta
|
| 85 |
+
elif token.startswith("DENSITY="):
|
| 86 |
+
pass
|
| 87 |
+
elif token == "[PAD]":
|
| 88 |
+
pass
|
| 89 |
+
else:
|
| 90 |
+
pass
|
| 91 |
+
|
| 92 |
+
# Make the instruments right.
|
| 93 |
+
instruments_drums = []
|
| 94 |
+
for note in note_sequence.notes:
|
| 95 |
+
pair = [note.program, note.is_drum]
|
| 96 |
+
if pair not in instruments_drums:
|
| 97 |
+
instruments_drums += [pair]
|
| 98 |
+
note.instrument = instruments_drums.index(pair)
|
| 99 |
+
|
| 100 |
+
if only_piano:
|
| 101 |
+
for note in note_sequence.notes:
|
| 102 |
+
if not note.is_drum:
|
| 103 |
+
note.instrument = 0
|
| 104 |
+
note.program = 0
|
| 105 |
+
|
| 106 |
+
return note_sequence
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def empty_note_sequence(qpm: float = 120.0, total_time: float = 0.0) -> NoteSequence:
|
| 110 |
+
"""
|
| 111 |
+
Creates an empty note sequence.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
qpm (float, optional): The quarter notes per minute. Defaults to 120.0.
|
| 115 |
+
total_time (float, optional): The total time. Defaults to 0.0.
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
NoteSequence: The empty note sequence.
|
| 119 |
+
"""
|
| 120 |
+
note_sequence = NoteSequence()
|
| 121 |
+
note_sequence.tempos.add().qpm = qpm
|
| 122 |
+
note_sequence.ticks_per_quarter = STANDARD_PPQ
|
| 123 |
+
note_sequence.total_time = total_time
|
| 124 |
+
return note_sequence
|
utils.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Tuple
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import note_seq
|
| 6 |
+
from matplotlib.figure import Figure
|
| 7 |
+
from numpy import ndarray
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from constants import GM_INSTRUMENTS, SAMPLE_RATE
|
| 11 |
+
from string_to_notes import token_sequence_to_note_sequence
|
| 12 |
+
from model import get_model_and_tokenizer
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
# Load the tokenizer and the model
|
| 18 |
+
model, tokenizer = get_model_and_tokenizer()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def create_seed_string(genre: str = "OTHER") -> str:
|
| 22 |
+
|
| 23 |
+
if genre == "RANDOM":
|
| 24 |
+
seed_string = "PIECE_START"
|
| 25 |
+
else:
|
| 26 |
+
seed_string = f"PIECE_START GENRE={genre} TRACK_START"
|
| 27 |
+
return seed_string
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_instruments(text_sequence: str) -> List[str]:
|
| 31 |
+
"""
|
| 32 |
+
Extracts the list of instruments from a text sequence.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
text_sequence (str): The text sequence.
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
List[str]: The list of instruments.
|
| 39 |
+
"""
|
| 40 |
+
instruments = []
|
| 41 |
+
parts = text_sequence.split()
|
| 42 |
+
for part in parts:
|
| 43 |
+
if part.startswith("INST="):
|
| 44 |
+
if part[5:] == "DRUMS":
|
| 45 |
+
instruments.append("Drums")
|
| 46 |
+
else:
|
| 47 |
+
index = int(part[5:])
|
| 48 |
+
instruments.append(GM_INSTRUMENTS[index])
|
| 49 |
+
return instruments
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def generate_new_instrument(seed: str, temp: float = 0.75) -> str:
|
| 53 |
+
|
| 54 |
+
seed_length = len(tokenizer.encode(seed))
|
| 55 |
+
|
| 56 |
+
while True:
|
| 57 |
+
# Encode the conditioning tokens.
|
| 58 |
+
input_ids = tokenizer.encode(seed, return_tensors="pt")
|
| 59 |
+
|
| 60 |
+
# Move the input_ids tensor to the same device as the model
|
| 61 |
+
input_ids = input_ids.to(model.device)
|
| 62 |
+
|
| 63 |
+
# Generate more tokens.
|
| 64 |
+
eos_token_id = tokenizer.encode("TRACK_END")[0]
|
| 65 |
+
generated_ids = model.generate(
|
| 66 |
+
input_ids,
|
| 67 |
+
max_new_tokens=2048,
|
| 68 |
+
do_sample=True,
|
| 69 |
+
temperature=temp,
|
| 70 |
+
eos_token_id=eos_token_id,
|
| 71 |
+
)
|
| 72 |
+
generated_sequence = tokenizer.decode(generated_ids[0])
|
| 73 |
+
|
| 74 |
+
# Check if the generated sequence contains "NOTE_ON" beyond the seed
|
| 75 |
+
new_generated_sequence = tokenizer.decode(generated_ids[0][seed_length:])
|
| 76 |
+
if "NOTE_ON" in new_generated_sequence:
|
| 77 |
+
return generated_sequence
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def get_outputs_from_string(
|
| 81 |
+
generated_sequence: str, qpm: int = 120
|
| 82 |
+
) -> Tuple[ndarray, str, Figure, str, str]:
|
| 83 |
+
|
| 84 |
+
instruments = get_instruments(generated_sequence)
|
| 85 |
+
instruments_str = "\n".join(f"- {instrument}" for instrument in instruments)
|
| 86 |
+
note_sequence = token_sequence_to_note_sequence(generated_sequence, qpm=qpm)
|
| 87 |
+
|
| 88 |
+
synth = note_seq.fluidsynth
|
| 89 |
+
array_of_floats = synth(note_sequence, sample_rate=SAMPLE_RATE)
|
| 90 |
+
int16_data = note_seq.audio_io.float_samples_to_int16(array_of_floats)
|
| 91 |
+
fig = note_seq.plot_sequence(note_sequence, show_figure=False)
|
| 92 |
+
num_tokens = str(len(generated_sequence.split()))
|
| 93 |
+
audio = gr.make_waveform((SAMPLE_RATE, int16_data))
|
| 94 |
+
note_seq.note_sequence_to_midi_file(note_sequence, "midi_ouput.mid")
|
| 95 |
+
return audio, "midi_ouput.mid", fig, instruments_str, num_tokens
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def remove_last_instrument(
|
| 99 |
+
text_sequence: str, qpm: int = 120
|
| 100 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
| 101 |
+
|
| 102 |
+
# We split the song into tracks by splitting on 'TRACK_START'
|
| 103 |
+
tracks = text_sequence.split("TRACK_START")
|
| 104 |
+
# We keep all tracks except the last one
|
| 105 |
+
modified_tracks = tracks[:-1]
|
| 106 |
+
# We join the tracks back together, adding back the 'TRACK_START' that was removed by split
|
| 107 |
+
new_song = "TRACK_START".join(modified_tracks)
|
| 108 |
+
|
| 109 |
+
if len(tracks) == 2:
|
| 110 |
+
# There is only one instrument, so start from scratch
|
| 111 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
| 112 |
+
text_sequence=new_song
|
| 113 |
+
)
|
| 114 |
+
elif len(tracks) == 1:
|
| 115 |
+
# No instrument so start from empty sequence
|
| 116 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
| 117 |
+
text_sequence=""
|
| 118 |
+
)
|
| 119 |
+
else:
|
| 120 |
+
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
|
| 121 |
+
new_song, qpm
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
return audio, midi_file, fig, instruments_str, new_song, num_tokens
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def regenerate_last_instrument(
|
| 128 |
+
text_sequence: str, qpm: int = 120
|
| 129 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
| 130 |
+
|
| 131 |
+
last_inst_index = text_sequence.rfind("INST=")
|
| 132 |
+
if last_inst_index == -1:
|
| 133 |
+
# No instrument so start from empty sequence
|
| 134 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
| 135 |
+
text_sequence="", qpm=qpm
|
| 136 |
+
)
|
| 137 |
+
else:
|
| 138 |
+
# Take it from the last instrument and continue generation
|
| 139 |
+
next_space_index = text_sequence.find(" ", last_inst_index)
|
| 140 |
+
new_seed = text_sequence[:next_space_index]
|
| 141 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
| 142 |
+
text_sequence=new_seed, qpm=qpm
|
| 143 |
+
)
|
| 144 |
+
return audio, midi_file, fig, instruments_str, new_song, num_tokens
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def change_tempo(
|
| 148 |
+
text_sequence: str, qpm: int
|
| 149 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
| 150 |
+
|
| 151 |
+
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
|
| 152 |
+
text_sequence, qpm=qpm
|
| 153 |
+
)
|
| 154 |
+
return audio, midi_file, fig, instruments_str, text_sequence, num_tokens
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def generate_song(
|
| 158 |
+
genre: str = "OTHER",
|
| 159 |
+
temp: float = 0.75,
|
| 160 |
+
text_sequence: str = "",
|
| 161 |
+
qpm: int = 120,
|
| 162 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
| 163 |
+
|
| 164 |
+
if text_sequence == "":
|
| 165 |
+
seed_string = create_seed_string(genre)
|
| 166 |
+
else:
|
| 167 |
+
seed_string = text_sequence
|
| 168 |
+
|
| 169 |
+
generated_sequence = generate_new_instrument(seed=seed_string, temp=temp)
|
| 170 |
+
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
|
| 171 |
+
generated_sequence, qpm
|
| 172 |
+
)
|
| 173 |
+
return audio, midi_file, fig, instruments_str, generated_sequence, num_tokens
|