Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.fft as fft | |
| from diffusers.models.unet_2d_condition import logger | |
| from diffusers.utils import is_torch_version | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| def isinstance_str(x: object, cls_name: str): | |
| """ | |
| Checks whether x has any class *named* cls_name in its ancestry. | |
| Doesn't require access to the class's implementation. | |
| Useful for patching! | |
| """ | |
| for _cls in x.__class__.__mro__: | |
| if _cls.__name__ == cls_name: | |
| return True | |
| return False | |
| def Fourier_filter(x, threshold, scale): | |
| dtype = x.dtype | |
| x = x.type(torch.float32) | |
| # FFT | |
| x_freq = fft.fftn(x, dim=(-2, -1)) | |
| x_freq = fft.fftshift(x_freq, dim=(-2, -1)) | |
| B, C, H, W = x_freq.shape | |
| mask = torch.ones((B, C, H, W)).cuda() | |
| crow, ccol = H // 2, W //2 | |
| mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale | |
| x_freq = x_freq * mask | |
| # IFFT | |
| x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) | |
| x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real | |
| x_filtered = x_filtered.type(dtype) | |
| return x_filtered | |
| def register_upblock2d(model): | |
| def up_forward(self): | |
| def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
| for resnet in self.resnets: | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| #print(f"in upblock2d, hidden states shape: {hidden_states.shape}") | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
| ) | |
| else: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb | |
| ) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| return forward | |
| for i, upsample_block in enumerate(model.unet.up_blocks): | |
| if isinstance_str(upsample_block, "UpBlock2D"): | |
| upsample_block.forward = up_forward(upsample_block) | |
| def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): | |
| def up_forward(self): | |
| def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
| for resnet in self.resnets: | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| #print(f"in free upblock2d, hidden states shape: {hidden_states.shape}") | |
| # --------------- FreeU code ----------------------- | |
| # Only operate on the first two stages | |
| if hidden_states.shape[1] == 1280: | |
| hidden_states[:,:640] = hidden_states[:,:640] * self.b1 | |
| res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) | |
| if hidden_states.shape[1] == 640: | |
| hidden_states[:,:320] = hidden_states[:,:320] * self.b2 | |
| res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) | |
| # --------------------------------------------------------- | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
| ) | |
| else: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb | |
| ) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| return forward | |
| for i, upsample_block in enumerate(model.unet.up_blocks): | |
| if isinstance_str(upsample_block, "UpBlock2D"): | |
| upsample_block.forward = up_forward(upsample_block) | |
| setattr(upsample_block, 'b1', b1) | |
| setattr(upsample_block, 'b2', b2) | |
| setattr(upsample_block, 's1', s1) | |
| setattr(upsample_block, 's2', s2) | |
| def register_crossattn_upblock2d(model): | |
| def up_forward(self): | |
| def forward( | |
| hidden_states: torch.FloatTensor, | |
| res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| upsample_size: Optional[int] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| ): | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| #print(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}") | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), | |
| hidden_states, | |
| encoder_hidden_states, | |
| None, # timestep | |
| None, # class_labels | |
| cross_attention_kwargs, | |
| attention_mask, | |
| encoder_attention_mask, | |
| **ckpt_kwargs, | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| return forward | |
| for i, upsample_block in enumerate(model.unet.up_blocks): | |
| if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): | |
| upsample_block.forward = up_forward(upsample_block) | |
| def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): | |
| def up_forward(self): | |
| def forward( | |
| hidden_states: torch.FloatTensor, | |
| res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| upsample_size: Optional[int] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| ): | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| #print(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}") | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| # --------------- FreeU code ----------------------- | |
| # Only operate on the first two stages | |
| if hidden_states.shape[1] == 1280: | |
| hidden_states[:,:640] = hidden_states[:,:640] * self.b1 | |
| res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) | |
| if hidden_states.shape[1] == 640: | |
| hidden_states[:,:320] = hidden_states[:,:320] * self.b2 | |
| res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) | |
| # --------------------------------------------------------- | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), | |
| hidden_states, | |
| encoder_hidden_states, | |
| None, # timestep | |
| None, # class_labels | |
| cross_attention_kwargs, | |
| attention_mask, | |
| encoder_attention_mask, | |
| **ckpt_kwargs, | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| # hidden_states = attn( | |
| # hidden_states, | |
| # encoder_hidden_states=encoder_hidden_states, | |
| # cross_attention_kwargs=cross_attention_kwargs, | |
| # encoder_attention_mask=encoder_attention_mask, | |
| # return_dict=False, | |
| # )[0] | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| )[0] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| return forward | |
| for i, upsample_block in enumerate(model.unet.up_blocks): | |
| if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): | |
| upsample_block.forward = up_forward(upsample_block) | |
| setattr(upsample_block, 'b1', b1) | |
| setattr(upsample_block, 'b2', b2) | |
| setattr(upsample_block, 's1', s1) | |
| setattr(upsample_block, 's2', s2) |