Spaces:
Running
on
Zero
Running
on
Zero
| if torch.cuda.is_available(): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "RunDiffusion/Juggernaut-X-v10", | |
| torch_dtype=torch.float16 | |
| ) | |
| #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| #pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle") | |
| #pipe.set_adapters("dalle") | |
| pipe.to("cuda") | |
| import gradio as gr | |
| from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline | |
| import torch | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| import spaces | |
| import os | |
| import random | |
| import uuid | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| MAX_SEED = np.iinfo(np.int32).max | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| JX_pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "RunDiffusion/Juggernaut-X-Hyper", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| ) | |
| JX_pipe.to("cuda") | |
| J10_pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "RunDiffusion/Juggernaut-X-v10", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| ) | |
| J10_pipe.to("cuda") | |
| J9_pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "RunDiffusion/Juggernaut-X-v10", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| variant="fp16" | |
| ) | |
| J9_pipe.to("cuda") | |
| def run_comparison(prompt: str, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| num_inference_steps: int = 30, | |
| num_images_per_prompt: int = 2, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3, | |
| randomize_seed: bool = False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| if not use_negative_prompt: | |
| negative_prompt = "" | |
| image_r3 = JX_pipe(prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images_per_prompt, | |
| cross_attention_kwargs={"scale": 0.65}, | |
| output_type="pil", | |
| ).images | |
| image_paths_r3 = [save_image(img) for img in image_r3] | |
| image_r4 = JX10_pipe(prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images_per_prompt, | |
| cross_attention_kwargs={"scale": 0.65}, | |
| output_type="pil", | |
| ).images | |
| image_paths_r4 = [save_image(img) for img in image_r4] | |
| image_r5 = JX9_pipe(prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images_per_prompt, | |
| cross_attention_kwargs={"scale": 0.65}, | |
| output_type="pil", | |
| ).images | |
| image_paths_r5 = [save_image(img) for img in image_r5] | |
| return image_paths_r3, image_paths_r4,image_paths_r5, seed | |
| examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.", | |
| "The spirit of a tamagotchi wandering in the city of Barcelona", | |
| "an ornate, high-backed mahogany chair with a red cushion", | |
| "a sketch of a camel next to a stream", | |
| "a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns", | |
| "a baby swan grafitti", | |
| "A bald eagle made of chocolate powder, mango, and whipped cream" | |
| ] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## One step SDXL comparison 🦶") | |
| gr.Markdown('Compare SDXL variants and distillations able to generate images in a single diffusion step') | |
| prompt = gr.Textbox(label="Prompt") | |
| run = gr.Button("Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| lines=4, | |
| max_lines=6, | |
| value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Steps", | |
| minimum=10, | |
| maximum=60, | |
| step=1, | |
| value=30, | |
| ) | |
| with gr.Row(): | |
| num_images_per_prompt = gr.Slider( | |
| label="Images", | |
| minimum=1, | |
| maximum=5, | |
| step=1, | |
| value=2, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| visible=True | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(visible=True): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=2048, | |
| step=8, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=2048, | |
| step=8, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=20.0, | |
| step=0.1, | |
| value=6, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_r3 = gr.Gallery(label="RealVisXL V3",columns=1, preview=True,) | |
| gr.Markdown("## [RealVisXL V3](https://huggingface.co)") | |
| with gr.Column(): | |
| image_r4 = gr.Gallery(label="RealVisXL V4",columns=1, preview=True,) | |
| gr.Markdown("## [RealVisXL V4](https://huggingface.co)") | |
| with gr.Column(): | |
| image_r5 = gr.Gallery(label="Playground v2.5",columns=1, preview=True,) | |
| gr.Markdown("## [Playground v2.5](https://huggingface.co)") | |
| image_outputs = [image_r3, image_r4, image_r5] | |
| gr.on( | |
| triggers=[prompt.submit, run.click], | |
| fn=run_comparison, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| num_inference_steps, | |
| num_images_per_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| randomize_seed, | |
| ], | |
| outputs=image_outputs | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| api_name=False, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=run_comparison, | |
| inputs=prompt, | |
| outputs=image_outputs, | |
| cache_examples=False, | |
| run_on_click=True | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(show_api=False, debug=False) |