Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,271 Bytes
1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 1d1d4f3 1e001e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import os
from typing import Optional, Dict, Sequence
import transformers
from peft import PeftModel
import torch
from dataclasses import dataclass, field
from huggingface_hub import hf_hub_download
import json
import pandas as pd
from datasets import Dataset
from tqdm import tqdm
import spaces
from llama_customized_models import LlamaForCausalLMWithNumericalEmbedding
from torch.nn.utils.rnn import pad_sequence
import numpy as np
from torch.utils.data.dataloader import DataLoader
from torch.nn import functional as F
import importlib
from rdkit import RDLogger, Chem
# Suppress RDKit INFO messages
RDLogger.DisableLog('rdApp.*')
DEFAULT_PAD_TOKEN = "[PAD]"
device_map = "cuda"
means = {"qed": 0.5559003125710424, "logp": 3.497542110420217, "sas": 2.889429694406497, "tpsa": 80.19717097706841}
stds = {"qed": 0.21339854620824716, "logp": 1.7923582437824368, "sas": 0.8081188219568571, "tpsa": 38.212259443049554}
def phrase_df(df):
metric_calculator = importlib.import_module("metric_calculator")
new_df = []
# iterate over the dataframe
for i in range(len(df)):
sub_df = dict()
# get the SMILES
smiles = df.iloc[i]['SMILES']
# get the property names
property_names = df.iloc[i]['property_names']
# get the non normalized properties
non_normalized_properties = df.iloc[i]['non_normalized_properties']
sub_df['SMILES'] = smiles
# compute the similarity between the scaffold and the SMILES
for j in range(len(property_names)):
# get the property name
property_name = property_names[j]
# get the non normalized property
non_normalized_property = non_normalized_properties[j]
sub_df[f'{property_name}_condition'] = non_normalized_property
if smiles == "":
sub_df[f'{property_name}_measured'] = np.nan
else:
property_eval_func_name = f"compute_{property_name}"
property_eval_func = getattr(metric_calculator, property_eval_func_name)
sub_df[f'{property_name}_measured'] = property_eval_func(Chem.MolFromSmiles(smiles))
new_df.append(sub_df)
new_df = pd.DataFrame(new_df)
return new_df
@dataclass
class DataCollatorForCausalLMEval(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
molecule_target_aug_prob: float
molecule_start_str: str
scaffold_aug_prob: float
scaffold_start_str: str
property_start_str: str
property_inner_sep: str
property_inter_sep: str
end_str: str
ignore_index: int
has_scaffold: bool
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# Extract elements
prop_token_map = {
'qed': '<qed>',
'logp': '<logp>',
'sas': '<SAS>',
'tpsa': '<TPSA>'
}
sources = []
props_list = []
non_normalized_props_list = []
prop_names_list = []
props_index_list = []
temperature_list = []
scaffold_list = []
for example in instances:
prop_names = example['property_name']
prop_values = example['property_value']
non_normalized_prop_values = example['non_normalized_property_value']
temperature = example['temperature']
# we need to convert the string to a list
# randomly choose the property and the scaffold combinations:
props_str = ""
scaffold_str = ""
props = []
non_nornalized_props = []
props_index = []
if self.has_scaffold:
scaffold = example['scaffold_smiles'].strip()
scaffold_str = f"{self.scaffold_start_str}{scaffold}{self.end_str}"
props_str = f"{self.property_start_str}"
for i, prop in enumerate(prop_names):
prop = prop.lower()
props_str += f"{prop_token_map[prop]}{self.property_inner_sep}{self.molecule_start_str}{self.property_inter_sep}"
props.append(prop_values[i])
non_nornalized_props.append(non_normalized_prop_values[i])
props_index.append(3 + 4 * i) # this is hard coded for the current template
props_str += f"{self.end_str}"
source = props_str + scaffold_str + "<->>" + self.molecule_start_str
sources.append(source)
props_list.append(props)
non_normalized_props_list.append(non_nornalized_props)
props_index_list.append(props_index)
prop_names_list.append(prop_names)
temperature_list.append(temperature)
# Tokenize
tokenized_sources_with_prompt = self.tokenizer(
sources,
max_length=self.source_max_len,
truncation=True,
add_special_tokens=False,
)
# Build the input and labels for causal LM
input_ids = []
for tokenized_source in tokenized_sources_with_prompt['input_ids']:
input_ids.append(torch.tensor(tokenized_source))
# Apply padding
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
data_dict = {
'input_ids': input_ids,
'attention_mask':input_ids.ne(self.tokenizer.pad_token_id),
'properties': props_list,
'non_normalized_properties': non_normalized_props_list,
'property_names': prop_names_list,
'properties_index': props_index_list,
'temperature': temperature_list,
}
return data_dict
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
non_special_tokens = None,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + tokenizer.add_tokens(non_special_tokens)
num_old_tokens = model.get_input_embeddings().weight.shape[0]
num_new_tokens = len(tokenizer) - num_old_tokens
if num_new_tokens == 0:
return
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings_data = model.get_input_embeddings().weight.data
input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
print(f"Resized tokenizer and embedding from {num_old_tokens} to {len(tokenizer)} tokens.")
class MolecularGenerationModel():
def __init__(self):
model_id = "ChemFM/molecular_cond_generation_guacamol"
self.tokenizer = AutoTokenizer.from_pretrained(
model_id,
padding_side="right",
use_fast=True,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
# load model
config = AutoConfig.from_pretrained(
model_id,
device_map=device_map,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
self.model = LlamaForCausalLMWithNumericalEmbedding.from_pretrained(
model_id,
config=config,
device_map=device_map,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
# the finetune tokenizer could be in different size with pretrain tokenizer, and also, we need to add PAD_TOKEN
special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=self.tokenizer,
model=self.model
)
self.model.config.pad_token_id = self.tokenizer.pad_token_id
self.model.eval()
string_template_path = hf_hub_download(model_id, filename="string_template.json", token = os.environ.get("TOKEN"))
string_template = json.load(open(string_template_path, 'r'))
molecule_start_str = string_template['MOLECULE_START_STRING']
scaffold_start_str = string_template['SCAFFOLD_MOLECULE_START_STRING']
property_start_str = string_template['PROPERTY_START_STRING']
property_inner_sep = string_template['PROPERTY_INNER_SEP']
property_inter_sep = string_template['PROPERTY_INTER_SEP']
end_str = string_template['END_STRING']
self.data_collator = DataCollatorForCausalLMEval(
tokenizer=self.tokenizer,
source_max_len=512,
target_max_len=512,
molecule_target_aug_prob=1.0,
scaffold_aug_prob=0.0,
molecule_start_str=molecule_start_str,
scaffold_start_str=scaffold_start_str,
property_start_str=property_start_str,
property_inner_sep=property_inner_sep,
property_inter_sep=property_inter_sep,
end_str=end_str,
ignore_index=-100,
has_scaffold=False
)
@spaces.GPU(duration=60)
def generate(self, loader):
df = []
pbar = tqdm(loader, desc=f"Evaluating...", leave=False)
for it, batch in enumerate(pbar):
sub_df = dict()
batch_size = batch['input_ids'].shape[0]
assert batch_size == 1, "The batch size should be 1"
temperature = batch['temperature'][0]
property_names = batch['property_names'][0]
non_normalized_properties = batch['non_normalized_properties'][0]
num_generations = 1
del batch['temperature']
del batch['property_names']
del batch['non_normalized_properties']
input_length = batch['input_ids'].shape[1]
steps = 1024 - input_length
with torch.set_grad_enabled(False):
early_stop_flags = torch.zeros(num_generations, dtype=torch.bool).to(self.model.device)
for k in range(steps):
logits = self.model(**batch)['logits']
logits = logits[:, -1, :] / temperature
probs = F.softmax(logits, dim=-1)
ix = torch.multinomial(probs, num_samples=num_generations)
ix[early_stop_flags] = self.tokenizer.eos_token_id
batch['input_ids'] = torch.cat([batch['input_ids'], ix], dim=-1)
early_stop_flags |= (ix.squeeze() == self.tokenizer.eos_token_id)
if torch.all(early_stop_flags):
break
generations = self.tokenizer.batch_decode(batch['input_ids'][:, input_length:], skip_special_tokens=True)
generations = map(lambda x: x.replace(" ", ""), generations)
predictions = []
for generation in generations:
try:
predictions.append(Chem.MolToSmiles(Chem.MolFromSmiles(generation)))
except:
predictions.append("")
sub_df['SMILES'] = predictions[0]
sub_df['property_names'] = property_names
sub_df['property'] = batch['properties'][0]
sub_df['non_normalized_properties'] = non_normalized_properties
df.append(sub_df)
df = pd.DataFrame(df)
return df
def predict_single_smiles(self, input_dict: Dict):
# conver the key to lower case
input_dict = {key.lower(): value for key, value in input_dict.items()}
properties = [key.lower() for key in input_dict.keys()]
property_means = [means[prop] for prop in properties]
property_stds = [stds[prop] for prop in properties]
sample_point = [input_dict[prop] for prop in properties]
non_normalized_sample_point = np.array(sample_point).reshape(-1)
sample_point = (np.array(sample_point) - np.array(property_means)) / np.array(property_stds)
sub_df = {
"property_name": properties,
"property_value": sample_point.tolist(),
"temperature": 1.0,
"non_normalized_property_value": non_normalized_sample_point.tolist()
}
test_dataset = [sub_df] * 10
test_dataset = pd.DataFrame(test_dataset)
test_dataset = Dataset.from_pandas(test_dataset)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, collate_fn=self.data_collator)
df = self.generate(test_loader)
new_df = phrase_df(df)
# delete the condition columns
new_df = new_df.drop(columns=[col for col in new_df.columns if "condition" in col])
# drop the empty smiles rows
new_df = new_df.dropna(subset=['SMILES'])
# convert the measured to 2 decimal places
new_df = new_df.round(2)
return new_df
|