zero_shot_mutation_prediction / app_topn_tokens.py
Kseniia-Kholina's picture
Rename app.py to app_topn_tokens.py
f9ddf41 verified
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
import logging
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the tokenizer and model
model_name = "ChatterjeeLab/FusOn-pLM"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained(model_name, trust_remote_code=True)
model.to(device)
model.eval()
def topn_tokens(sequence, domain_bounds, n):
start_index = int(domain_bounds['start'][0]) - 1
end_index = int(domain_bounds['end'][0]) - 1
top_n_mutations = {}
for i in range(len(sequence)):
# Only mask and unmask the residues within the specified domain boundaries
if start_index <= i <= end_index:
masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]
inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True, max_length=2000)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
logits = model(**inputs).logits
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
mask_token_logits = logits[0, mask_token_index, :]
# Decode top n tokens
top_n_tokens = torch.topk(mask_token_logits, n, dim=1).indices[0].tolist()
mutation = [tokenizer.decode([token]) for token in top_n_tokens]
top_n_mutations[(sequence[i], i)] = mutation
original_residues = []
mutations = []
positions = []
for key, value in top_n_mutations.items():
original_residue, position = key
original_residues.append(original_residue)
mutations.append(value)
positions.append(position + 1)
df = pd.DataFrame({
'Original Residue': original_residues,
'Predicted Residues (in order of decreasing likelihood)': mutations,
'Position': positions
})
return df
demo = gr.Interface(
fn=topn_tokens,
inputs=[
"text",
gr.Dataframe(
headers=["start", "end"],
datatype=["number", "number"],
row_count=(1, "fixed"),
col_count=(2, "fixed"),
),
gr.Dropdown([i for i in range(1, 21)]), # Dropdown with numbers from 1 to 20 as integers
],
outputs="dataframe",
description="Choose a number between 1-20 to predict n tokens for each position. Choose the start and end index of the domain of interest (indexing starts at 1).",
)
if __name__ == "__main__":
demo.launch()