Spaces:
Sleeping
Sleeping
Commit
Β·
8e8c463
1
Parent(s):
67cbded
added plot
Browse files- app.py +106 -39
- src/assets/text_content.py +1 -1
- src/utils.py +2 -1
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
|
@@ -16,9 +17,9 @@ COLUMNS_MAPPING = {
|
|
| 16 |
"model": "Model π€",
|
| 17 |
"backend.name": "Backend π",
|
| 18 |
"backend.torch_dtype": "Datatype π₯",
|
| 19 |
-
"average": "Average H4 Score β¬οΈ",
|
| 20 |
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
| 21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
|
|
|
| 22 |
}
|
| 23 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "markdown", "number", "number"]
|
| 24 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
|
@@ -33,16 +34,14 @@ def get_benchmark_df(benchmark):
|
|
| 33 |
|
| 34 |
# load
|
| 35 |
bench_df = pd.read_csv(
|
| 36 |
-
f"./llm-perf-dataset/reports/{benchmark}
|
| 37 |
-
|
| 38 |
scores_df = pd.read_csv(
|
| 39 |
-
f"./llm-perf-dataset/reports/
|
| 40 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
| 41 |
-
bench_df["average"] = bench_df["average"].apply(
|
| 42 |
-
make_clickable_score)
|
| 43 |
|
| 44 |
# preprocess
|
| 45 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
|
|
|
| 46 |
# filter
|
| 47 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
| 48 |
# rename
|
|
@@ -53,55 +52,98 @@ def get_benchmark_df(benchmark):
|
|
| 53 |
return bench_df
|
| 54 |
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
-
# extract the average score (float) from the clickable score (clickable markdown)
|
| 59 |
-
raw_df["Average H4 Score β¬οΈ"] = raw_df["Average H4 Score β¬οΈ"].apply(
|
| 60 |
-
extract_score_from_clickable)
|
| 61 |
-
filtered_df = raw_df[
|
| 62 |
-
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
|
| 63 |
-
raw_df["Backend π"].isin(backends) &
|
| 64 |
-
raw_df["Datatype π₯"].isin(datatypes) &
|
| 65 |
-
(raw_df["Average H4 Score β¬οΈ"] >= threshold)
|
| 66 |
-
]
|
| 67 |
-
filtered_df["Average H4 Score β¬οΈ"] = filtered_df["Average H4 Score β¬οΈ"].apply(
|
| 68 |
-
make_clickable_score)
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
demo = gr.Blocks(css=custom_css)
|
| 75 |
with demo:
|
|
|
|
| 76 |
gr.HTML(TITLE)
|
|
|
|
|
|
|
| 77 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 78 |
|
| 79 |
-
#
|
|
|
|
|
|
|
|
|
|
| 80 |
with gr.Row():
|
| 81 |
search_bar = gr.Textbox(
|
| 82 |
label="Model π€",
|
| 83 |
-
info="Search for a model name",
|
| 84 |
elem_id="search-bar",
|
| 85 |
)
|
| 86 |
backend_checkboxes = gr.CheckboxGroup(
|
| 87 |
label="Backends π",
|
| 88 |
choices=["pytorch", "onnxruntime"],
|
| 89 |
value=["pytorch", "onnxruntime"],
|
| 90 |
-
info="Select the backends",
|
| 91 |
elem_id="backend-checkboxes",
|
| 92 |
)
|
| 93 |
datatype_checkboxes = gr.CheckboxGroup(
|
| 94 |
label="Datatypes π₯",
|
| 95 |
choices=["float32", "float16"],
|
| 96 |
value=["float32", "float16"],
|
| 97 |
-
info="Select the load datatypes",
|
| 98 |
elem_id="datatype-checkboxes",
|
| 99 |
)
|
| 100 |
-
|
| 101 |
-
with gr.Row():
|
| 102 |
threshold_slider = gr.Slider(
|
| 103 |
label="Average H4 Score π",
|
| 104 |
-
info="
|
| 105 |
value=0.0,
|
| 106 |
elem_id="threshold-slider",
|
| 107 |
)
|
|
@@ -109,16 +151,14 @@ with demo:
|
|
| 109 |
with gr.Row():
|
| 110 |
submit_button = gr.Button(
|
| 111 |
value="Submit π",
|
| 112 |
-
info="Submit the filters",
|
| 113 |
elem_id="submit-button",
|
| 114 |
)
|
| 115 |
|
| 116 |
# leaderboard tabs
|
| 117 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 118 |
-
with gr.TabItem("π₯οΈ A100-80GB
|
| 119 |
gr.HTML(SINGLE_A100_TEXT)
|
| 120 |
|
| 121 |
-
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
| 122 |
# Original leaderboard table
|
| 123 |
single_A100_leaderboard = gr.components.Dataframe(
|
| 124 |
value=single_A100_df,
|
|
@@ -135,15 +175,15 @@ with demo:
|
|
| 135 |
visible=False,
|
| 136 |
)
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Accordion("π Citation", open=False):
|
|
@@ -153,6 +193,33 @@ with demo:
|
|
| 153 |
elem_id="citation-button",
|
| 154 |
).style(show_copy_button=True)
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
# Restart space every hour
|
| 157 |
scheduler = BackgroundScheduler()
|
| 158 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|
|
|
|
| 1 |
+
import plotly.express as px
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
|
|
|
| 17 |
"model": "Model π€",
|
| 18 |
"backend.name": "Backend π",
|
| 19 |
"backend.torch_dtype": "Datatype π₯",
|
|
|
|
| 20 |
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
| 21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
| 22 |
+
"h4_score": "H4 Score β¬οΈ",
|
| 23 |
}
|
| 24 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "markdown", "number", "number"]
|
| 25 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
|
|
|
| 34 |
|
| 35 |
# load
|
| 36 |
bench_df = pd.read_csv(
|
| 37 |
+
f"./llm-perf-dataset/reports/{benchmark}.csv")
|
|
|
|
| 38 |
scores_df = pd.read_csv(
|
| 39 |
+
f"./llm-perf-dataset/reports/additional_data.csv")
|
| 40 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# preprocess
|
| 43 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
| 44 |
+
bench_df["h4_score"] = bench_df["h4_score"].apply(make_clickable_score)
|
| 45 |
# filter
|
| 46 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
| 47 |
# rename
|
|
|
|
| 52 |
return bench_df
|
| 53 |
|
| 54 |
|
| 55 |
+
# Dataframes
|
| 56 |
+
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
def get_benchmark_plot(benchmark):
|
| 60 |
+
if llm_perf_dataset_repo:
|
| 61 |
+
llm_perf_dataset_repo.git_pull()
|
| 62 |
|
| 63 |
+
# load
|
| 64 |
+
bench_df = pd.read_csv(
|
| 65 |
+
f"./llm-perf-dataset/reports/{benchmark}.csv")
|
| 66 |
+
scores_df = pd.read_csv(
|
| 67 |
+
f"./llm-perf-dataset/reports/additional_data.csv")
|
| 68 |
+
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
| 69 |
|
| 70 |
+
fig = px.scatter(
|
| 71 |
+
bench_df, x="h4_score", y="generate.latency(s)",
|
| 72 |
+
color='model_type', symbol='backend.name', size='forward.peak_memory(MB)',
|
| 73 |
+
custom_data=['model', 'backend.name', 'backend.torch_dtype',
|
| 74 |
+
'forward.peak_memory(MB)', 'generate.throughput(tokens/s)'],
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
fig.update_traces(
|
| 78 |
+
title={
|
| 79 |
+
'text': "Model Score vs. Latency vs. Memory",
|
| 80 |
+
'y': 0.95, 'x': 0.5,
|
| 81 |
+
'xanchor': 'center',
|
| 82 |
+
'yanchor': 'top'
|
| 83 |
+
},
|
| 84 |
+
xaxis_title="Average H4 Score",
|
| 85 |
+
yaxis_title="Latency per 1000 Tokens (s)",
|
| 86 |
+
legend_title="Model Type",
|
| 87 |
+
legend=dict(
|
| 88 |
+
orientation="h",
|
| 89 |
+
yanchor="middle",
|
| 90 |
+
xanchor="center",
|
| 91 |
+
y=-0.15,
|
| 92 |
+
x=0.5
|
| 93 |
+
),
|
| 94 |
+
hovertemplate="<br>".join([
|
| 95 |
+
"Model: %{customdata[0]}",
|
| 96 |
+
"Backend: %{customdata[1]}",
|
| 97 |
+
"Datatype: %{customdata[2]}",
|
| 98 |
+
"Peak Memory (MB): %{customdata[3]}",
|
| 99 |
+
"Throughput (tokens/s): %{customdata[4]}",
|
| 100 |
+
"Latency per 1000 Tokens (s): %{y}",
|
| 101 |
+
"Average H4 Score: %{x}"
|
| 102 |
+
])
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
return fig
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# Plots
|
| 109 |
+
single_A100_plot = get_benchmark_plot(benchmark="1xA100-80GB")
|
| 110 |
+
|
| 111 |
+
# Demo interface
|
| 112 |
demo = gr.Blocks(css=custom_css)
|
| 113 |
with demo:
|
| 114 |
+
# leaderboard title
|
| 115 |
gr.HTML(TITLE)
|
| 116 |
+
|
| 117 |
+
# introduction text
|
| 118 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 119 |
|
| 120 |
+
# control panel title
|
| 121 |
+
gr.HTML("<h2>Control Panel ποΈ</h2>")
|
| 122 |
+
|
| 123 |
+
# control panel interface
|
| 124 |
with gr.Row():
|
| 125 |
search_bar = gr.Textbox(
|
| 126 |
label="Model π€",
|
| 127 |
+
info="π Search for a model name",
|
| 128 |
elem_id="search-bar",
|
| 129 |
)
|
| 130 |
backend_checkboxes = gr.CheckboxGroup(
|
| 131 |
label="Backends π",
|
| 132 |
choices=["pytorch", "onnxruntime"],
|
| 133 |
value=["pytorch", "onnxruntime"],
|
| 134 |
+
info="βοΈ Select the backends",
|
| 135 |
elem_id="backend-checkboxes",
|
| 136 |
)
|
| 137 |
datatype_checkboxes = gr.CheckboxGroup(
|
| 138 |
label="Datatypes π₯",
|
| 139 |
choices=["float32", "float16"],
|
| 140 |
value=["float32", "float16"],
|
| 141 |
+
info="βοΈ Select the load datatypes",
|
| 142 |
elem_id="datatype-checkboxes",
|
| 143 |
)
|
|
|
|
|
|
|
| 144 |
threshold_slider = gr.Slider(
|
| 145 |
label="Average H4 Score π",
|
| 146 |
+
info="lter by minimum average H4 score",
|
| 147 |
value=0.0,
|
| 148 |
elem_id="threshold-slider",
|
| 149 |
)
|
|
|
|
| 151 |
with gr.Row():
|
| 152 |
submit_button = gr.Button(
|
| 153 |
value="Submit π",
|
|
|
|
| 154 |
elem_id="submit-button",
|
| 155 |
)
|
| 156 |
|
| 157 |
# leaderboard tabs
|
| 158 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 159 |
+
with gr.TabItem("π₯οΈ A100-80GB Leaderboard π", id=0):
|
| 160 |
gr.HTML(SINGLE_A100_TEXT)
|
| 161 |
|
|
|
|
| 162 |
# Original leaderboard table
|
| 163 |
single_A100_leaderboard = gr.components.Dataframe(
|
| 164 |
value=single_A100_df,
|
|
|
|
| 175 |
visible=False,
|
| 176 |
)
|
| 177 |
|
| 178 |
+
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
|
| 179 |
+
# Original leaderboard plot
|
| 180 |
+
gr.HTML(SINGLE_A100_TEXT)
|
| 181 |
+
|
| 182 |
+
single_A100_plotly = gr.components.Plot(
|
| 183 |
+
value=single_A100_plot,
|
| 184 |
+
elem_id="1xA100-plot",
|
| 185 |
+
show_label=False,
|
| 186 |
+
)
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Accordion("π Citation", open=False):
|
|
|
|
| 193 |
elem_id="citation-button",
|
| 194 |
).style(show_copy_button=True)
|
| 195 |
|
| 196 |
+
|
| 197 |
+
def submit_query(text, backends, datatypes, threshold, raw_df):
|
| 198 |
+
raw_df["H4 Score β¬οΈ"] = raw_df["H4 Score β¬οΈ"].apply(
|
| 199 |
+
extract_score_from_clickable)
|
| 200 |
+
|
| 201 |
+
filtered_df = raw_df[
|
| 202 |
+
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
|
| 203 |
+
raw_df["Backend π"].isin(backends) &
|
| 204 |
+
raw_df["Datatype π₯"].isin(datatypes) &
|
| 205 |
+
(raw_df["H4 Score β¬οΈ"] >= threshold)
|
| 206 |
+
]
|
| 207 |
+
|
| 208 |
+
filtered_df["H4 Score β¬οΈ"] = filtered_df["H4 Score β¬οΈ"].apply(
|
| 209 |
+
make_clickable_score)
|
| 210 |
+
return filtered_df
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# Callbacks
|
| 214 |
+
submit_button.click(
|
| 215 |
+
submit_query,
|
| 216 |
+
[
|
| 217 |
+
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
|
| 218 |
+
single_A100_for_search
|
| 219 |
+
],
|
| 220 |
+
[single_A100_leaderboard]
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
# Restart space every hour
|
| 224 |
scheduler = BackgroundScheduler()
|
| 225 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|
src/assets/text_content.py
CHANGED
|
@@ -8,7 +8,7 @@ Anyone from the community can request a model or a hardware+backend+optimization
|
|
| 8 |
- Hardware+Backend+Optimization requests should be made in the π€ Open LLM-Perf Leaderboard ποΈ [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) for open discussion about their relevance and feasibility.
|
| 9 |
"""
|
| 10 |
|
| 11 |
-
SINGLE_A100_TEXT = """<h3>Single-GPU
|
| 12 |
<ul>
|
| 13 |
<li>Singleton Batch (1)</li>
|
| 14 |
<li>Thousand Tokens (1000)</li>
|
|
|
|
| 8 |
- Hardware+Backend+Optimization requests should be made in the π€ Open LLM-Perf Leaderboard ποΈ [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) for open discussion about their relevance and feasibility.
|
| 9 |
"""
|
| 10 |
|
| 11 |
+
SINGLE_A100_TEXT = """<h3>Single-GPU Benchmark (1xA100):</h3>
|
| 12 |
<ul>
|
| 13 |
<li>Singleton Batch (1)</li>
|
| 14 |
<li>Thousand Tokens (1000)</li>
|
src/utils.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from huggingface_hub import HfApi, Repository
|
| 2 |
|
| 3 |
|
|
@@ -68,4 +69,4 @@ def make_clickable_score(score):
|
|
| 68 |
|
| 69 |
|
| 70 |
def extract_score_from_clickable(clickable_score) -> float:
|
| 71 |
-
return float(
|
|
|
|
| 1 |
+
import re
|
| 2 |
from huggingface_hub import HfApi, Repository
|
| 3 |
|
| 4 |
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
def extract_score_from_clickable(clickable_score) -> float:
|
| 72 |
+
return float(re.findall(r"\d+\.\d+", clickable_score)[-1])
|