__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image'] #import timm # %% app.ipynb 2 from fastai.vision.all import * import gradio as gr #import timm def is_cat(x): return x[0].isupper() # %% app.ipynb 4 learn = load_learner('which_car.pkl') # %% app.ipynb 6 categories = ( 'Mercedes cars', 'Ferrari cars', 'BMW cars', 'Bentley cars', 'Porsche cars', 'Aston Martin cars', 'Audi cars' , 'Maserati cars', 'McLaren cars', 'Lamborghini cars', 'Bugatti cars', 'Koenigsegg cars', 'Pagani cars', 'Tesla cars') #categories = ('Dog', 'Cat') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # %% app.ipynb 8 from gradio.components import Image, Label # %% app.ipynb 9 image = Image(width=192, height=192) label = Label() examples = ['benz.jpg', 'ferrari.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)