Spaces:
Sleeping
Sleeping
Update models/image_models.py
Browse files- models/image_models.py +284 -267
models/image_models.py
CHANGED
|
@@ -1,267 +1,284 @@
|
|
| 1 |
-
# models/image_models.py
|
| 2 |
-
import logging
|
| 3 |
-
import os
|
| 4 |
-
import torch
|
| 5 |
-
from typing import Dict, List, Optional, Tuple, Union, Any
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import numpy as np
|
| 8 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 9 |
-
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 10 |
-
|
| 11 |
-
class ImageModelManager:
|
| 12 |
-
def __init__(self, token_manager=None, cache_manager=None, metrics_calculator=None):
|
| 13 |
-
"""Initialize the ImageModelManager with optional utilities."""
|
| 14 |
-
self.logger = logging.getLogger(__name__)
|
| 15 |
-
self.token_manager = token_manager
|
| 16 |
-
self.cache_manager = cache_manager
|
| 17 |
-
self.metrics_calculator = metrics_calculator
|
| 18 |
-
|
| 19 |
-
# Model instances
|
| 20 |
-
self.lightweight_model = None
|
| 21 |
-
self.lightweight_processor = None
|
| 22 |
-
self.advanced_model = None
|
| 23 |
-
self.advanced_processor = None
|
| 24 |
-
|
| 25 |
-
# Model names
|
| 26 |
-
self.lightweight_model_name = "Salesforce/blip-image-captioning-base"
|
| 27 |
-
self.advanced_model_name = "Salesforce/blip2-opt-2.7b"
|
| 28 |
-
|
| 29 |
-
# Track initialization state
|
| 30 |
-
self.initialized = {
|
| 31 |
-
"lightweight": False,
|
| 32 |
-
"advanced": False
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
# Default complexity thresholds
|
| 36 |
-
self.complexity_thresholds = {
|
| 37 |
-
"entropy": 4.5, # Higher entropy suggests more complex image
|
| 38 |
-
"edge_density": 0.15, # Higher edge density suggests more details
|
| 39 |
-
"size": 500000 # Larger images may contain more information
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
def initialize_lightweight_model(self):
|
| 43 |
-
"""Initialize the lightweight image captioning model."""
|
| 44 |
-
if self.initialized["lightweight"]:
|
| 45 |
-
return
|
| 46 |
-
|
| 47 |
-
try:
|
| 48 |
-
# Register with token manager if available
|
| 49 |
-
if self.token_manager:
|
| 50 |
-
self.token_manager.register_model(
|
| 51 |
-
self.lightweight_model_name, "image_captioning")
|
| 52 |
-
|
| 53 |
-
# Load model and processor
|
| 54 |
-
self.logger.info(f"Loading lightweight image model: {self.lightweight_model_name}")
|
| 55 |
-
self.lightweight_processor = BlipProcessor.from_pretrained(self.lightweight_model_name)
|
| 56 |
-
self.lightweight_model = BlipForConditionalGeneration.from_pretrained(
|
| 57 |
-
self.lightweight_model_name, torch_dtype=torch.float32)
|
| 58 |
-
|
| 59 |
-
self.initialized["lightweight"] = True
|
| 60 |
-
self.logger.info("Lightweight image model initialized successfully")
|
| 61 |
-
|
| 62 |
-
except Exception as e:
|
| 63 |
-
self.logger.error(f"Failed to initialize lightweight image model: {e}")
|
| 64 |
-
raise
|
| 65 |
-
|
| 66 |
-
def initialize_advanced_model(self):
|
| 67 |
-
"""Initialize the advanced image captioning model."""
|
| 68 |
-
if self.initialized["advanced"]:
|
| 69 |
-
return
|
| 70 |
-
|
| 71 |
-
try:
|
| 72 |
-
# Register with token manager if available
|
| 73 |
-
if self.token_manager:
|
| 74 |
-
self.token_manager.register_model(
|
| 75 |
-
self.advanced_model_name, "image_captioning")
|
| 76 |
-
|
| 77 |
-
# Load model and processor
|
| 78 |
-
self.logger.info(f"Loading advanced image model: {self.advanced_model_name}")
|
| 79 |
-
self.advanced_processor = Blip2Processor.from_pretrained(self.advanced_model_name)
|
| 80 |
-
self.advanced_model = Blip2ForConditionalGeneration.from_pretrained(
|
| 81 |
-
self.advanced_model_name, torch_dtype=torch.float16)
|
| 82 |
-
|
| 83 |
-
self.initialized["advanced"] = True
|
| 84 |
-
self.logger.info("Advanced image model initialized successfully")
|
| 85 |
-
|
| 86 |
-
except Exception as e:
|
| 87 |
-
self.logger.error(f"Failed to initialize advanced image model: {e}")
|
| 88 |
-
raise
|
| 89 |
-
|
| 90 |
-
def determine_image_complexity(self, image: Image.Image) -> Dict[str, float]:
|
| 91 |
-
"""
|
| 92 |
-
Determine the complexity of an image to guide model selection.
|
| 93 |
-
Returns complexity metrics.
|
| 94 |
-
"""
|
| 95 |
-
# Convert to numpy array
|
| 96 |
-
img_array = np.array(image.convert("L")) # Convert to grayscale for analysis
|
| 97 |
-
|
| 98 |
-
# Calculate image entropy (measure of randomness/information)
|
| 99 |
-
histogram = np.histogram(img_array, bins=256, range=(0, 256))[0]
|
| 100 |
-
histogram = histogram / histogram.sum()
|
| 101 |
-
non_zero = histogram > 0
|
| 102 |
-
entropy = -np.sum(histogram[non_zero] * np.log2(histogram[non_zero]))
|
| 103 |
-
|
| 104 |
-
# Calculate edge density using simple gradient method
|
| 105 |
-
gradient_x = np.abs(np.diff(img_array, axis=1, prepend=0))
|
| 106 |
-
gradient_y = np.abs(np.diff(img_array, axis=0, prepend=0))
|
| 107 |
-
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)
|
| 108 |
-
edge_density = np.mean(gradient_magnitude > 30) # Threshold for edge detection
|
| 109 |
-
|
| 110 |
-
# Get image size in pixels
|
| 111 |
-
size = image.width * image.height
|
| 112 |
-
|
| 113 |
-
return {
|
| 114 |
-
"entropy": float(entropy),
|
| 115 |
-
"edge_density": float(edge_density),
|
| 116 |
-
"size": size
|
| 117 |
-
}
|
| 118 |
-
|
| 119 |
-
def select_captioning_model(self, image: Image.Image) -> str:
|
| 120 |
-
"""
|
| 121 |
-
Select the appropriate captioning model based on image complexity.
|
| 122 |
-
Returns model type ("lightweight" or "advanced").
|
| 123 |
-
"""
|
| 124 |
-
# Get complexity metrics
|
| 125 |
-
complexity = self.determine_image_complexity(image)
|
| 126 |
-
|
| 127 |
-
# Decision logic for model selection
|
| 128 |
-
use_advanced = (
|
| 129 |
-
complexity["entropy"] > self.complexity_thresholds["entropy"] or
|
| 130 |
-
complexity["edge_density"] > self.complexity_thresholds["edge_density"] or
|
| 131 |
-
complexity["size"] > self.complexity_thresholds["size"]
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
# Log selection decision
|
| 135 |
-
model_type = "advanced" if use_advanced else "lightweight"
|
| 136 |
-
self.logger.info(f"Selected {model_type} model for image captioning (complexity: {complexity})")
|
| 137 |
-
|
| 138 |
-
# If metrics calculator is available, log model selection
|
| 139 |
-
if use_advanced and self.metrics_calculator:
|
| 140 |
-
# Estimate energy saved if we had used the advanced model
|
| 141 |
-
# This is a negative number since we're using more energy
|
| 142 |
-
energy_diff = -0.01 # Approximate difference in watt-hours
|
| 143 |
-
self.metrics_calculator.log_model_downgrade(
|
| 144 |
-
self.advanced_model_name, self.lightweight_model_name, energy_diff)
|
| 145 |
-
|
| 146 |
-
return model_type
|
| 147 |
-
|
| 148 |
-
def generate_image_caption(self, image: Union[str, Image.Image],
|
| 149 |
-
agent_name: str = "image_processing") -> Dict[str, Any]:
|
| 150 |
-
"""
|
| 151 |
-
Generate caption for an image, selecting appropriate model based on complexity.
|
| 152 |
-
Returns caption and metadata.
|
| 153 |
-
"""
|
| 154 |
-
# Handle string input (file path)
|
| 155 |
-
if isinstance(image, str):
|
| 156 |
-
if os.path.exists(image):
|
| 157 |
-
image = Image.open(image).convert('RGB')
|
| 158 |
-
else:
|
| 159 |
-
raise ValueError(f"Image file not found: {image}")
|
| 160 |
-
|
| 161 |
-
# Ensure image is PIL Image
|
| 162 |
-
if not isinstance(image, Image.Image):
|
| 163 |
-
raise TypeError("Image must be a PIL Image or a valid file path")
|
| 164 |
-
|
| 165 |
-
# Check cache if available
|
| 166 |
-
image_hash = str(hash(image.tobytes()))
|
| 167 |
-
if self.cache_manager:
|
| 168 |
-
cache_hit, cached_result = self.cache_manager.get(
|
| 169 |
-
image_hash, namespace="image_captions")
|
| 170 |
-
|
| 171 |
-
if cache_hit:
|
| 172 |
-
# Update metrics if available
|
| 173 |
-
if self.metrics_calculator:
|
| 174 |
-
self.metrics_calculator.update_cache_metrics(1, 0, 0.01) # Estimated energy saving
|
| 175 |
-
return cached_result
|
| 176 |
-
|
| 177 |
-
# Select model based on image complexity
|
| 178 |
-
model_type = self.select_captioning_model(image)
|
| 179 |
-
|
| 180 |
-
# Initialize selected model if needed
|
| 181 |
-
if model_type == "advanced":
|
| 182 |
-
if not self.initialized["advanced"]:
|
| 183 |
-
self.initialize_advanced_model()
|
| 184 |
-
|
| 185 |
-
processor = self.advanced_processor
|
| 186 |
-
model = self.advanced_model
|
| 187 |
-
model_name = self.advanced_model_name
|
| 188 |
-
else:
|
| 189 |
-
if not self.initialized["lightweight"]:
|
| 190 |
-
self.initialize_lightweight_model()
|
| 191 |
-
|
| 192 |
-
processor = self.lightweight_processor
|
| 193 |
-
model = self.lightweight_model
|
| 194 |
-
model_name = self.lightweight_model_name
|
| 195 |
-
|
| 196 |
-
# Process image
|
| 197 |
-
inputs = processor(image, return_tensors="pt")
|
| 198 |
-
|
| 199 |
-
# Request token budget if available
|
| 200 |
-
if self.token_manager:
|
| 201 |
-
# Estimate token usage (approximate)
|
| 202 |
-
estimated_tokens = 50 # Base tokens for generation
|
| 203 |
-
approved, reason = self.token_manager.request_tokens(
|
| 204 |
-
agent_name, "image_captioning", "", model_name)
|
| 205 |
-
|
| 206 |
-
if not approved:
|
| 207 |
-
self.logger.warning(f"Token budget exceeded: {reason}")
|
| 208 |
-
return {"caption": "Token budget exceeded", "error": reason}
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
#
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# models/image_models.py
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
from typing import Dict, List, Optional, Tuple, Union, Any
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import numpy as np
|
| 8 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 9 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 10 |
+
|
| 11 |
+
class ImageModelManager:
|
| 12 |
+
def __init__(self, token_manager=None, cache_manager=None, metrics_calculator=None):
|
| 13 |
+
"""Initialize the ImageModelManager with optional utilities."""
|
| 14 |
+
self.logger = logging.getLogger(__name__)
|
| 15 |
+
self.token_manager = token_manager
|
| 16 |
+
self.cache_manager = cache_manager
|
| 17 |
+
self.metrics_calculator = metrics_calculator
|
| 18 |
+
|
| 19 |
+
# Model instances
|
| 20 |
+
self.lightweight_model = None
|
| 21 |
+
self.lightweight_processor = None
|
| 22 |
+
self.advanced_model = None
|
| 23 |
+
self.advanced_processor = None
|
| 24 |
+
|
| 25 |
+
# Model names
|
| 26 |
+
self.lightweight_model_name = "Salesforce/blip-image-captioning-base"
|
| 27 |
+
self.advanced_model_name = "Salesforce/blip2-opt-2.7b"
|
| 28 |
+
|
| 29 |
+
# Track initialization state
|
| 30 |
+
self.initialized = {
|
| 31 |
+
"lightweight": False,
|
| 32 |
+
"advanced": False
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Default complexity thresholds
|
| 36 |
+
self.complexity_thresholds = {
|
| 37 |
+
"entropy": 4.5, # Higher entropy suggests more complex image
|
| 38 |
+
"edge_density": 0.15, # Higher edge density suggests more details
|
| 39 |
+
"size": 500000 # Larger images may contain more information
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
def initialize_lightweight_model(self):
|
| 43 |
+
"""Initialize the lightweight image captioning model."""
|
| 44 |
+
if self.initialized["lightweight"]:
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
# Register with token manager if available
|
| 49 |
+
if self.token_manager:
|
| 50 |
+
self.token_manager.register_model(
|
| 51 |
+
self.lightweight_model_name, "image_captioning")
|
| 52 |
+
|
| 53 |
+
# Load model and processor
|
| 54 |
+
self.logger.info(f"Loading lightweight image model: {self.lightweight_model_name}")
|
| 55 |
+
self.lightweight_processor = BlipProcessor.from_pretrained(self.lightweight_model_name)
|
| 56 |
+
self.lightweight_model = BlipForConditionalGeneration.from_pretrained(
|
| 57 |
+
self.lightweight_model_name, torch_dtype=torch.float32)
|
| 58 |
+
|
| 59 |
+
self.initialized["lightweight"] = True
|
| 60 |
+
self.logger.info("Lightweight image model initialized successfully")
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
self.logger.error(f"Failed to initialize lightweight image model: {e}")
|
| 64 |
+
raise
|
| 65 |
+
|
| 66 |
+
def initialize_advanced_model(self):
|
| 67 |
+
"""Initialize the advanced image captioning model."""
|
| 68 |
+
if self.initialized["advanced"]:
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
# Register with token manager if available
|
| 73 |
+
if self.token_manager:
|
| 74 |
+
self.token_manager.register_model(
|
| 75 |
+
self.advanced_model_name, "image_captioning")
|
| 76 |
+
|
| 77 |
+
# Load model and processor
|
| 78 |
+
self.logger.info(f"Loading advanced image model: {self.advanced_model_name}")
|
| 79 |
+
self.advanced_processor = Blip2Processor.from_pretrained(self.advanced_model_name)
|
| 80 |
+
self.advanced_model = Blip2ForConditionalGeneration.from_pretrained(
|
| 81 |
+
self.advanced_model_name, torch_dtype=torch.float16)
|
| 82 |
+
|
| 83 |
+
self.initialized["advanced"] = True
|
| 84 |
+
self.logger.info("Advanced image model initialized successfully")
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
self.logger.error(f"Failed to initialize advanced image model: {e}")
|
| 88 |
+
raise
|
| 89 |
+
|
| 90 |
+
def determine_image_complexity(self, image: Image.Image) -> Dict[str, float]:
|
| 91 |
+
"""
|
| 92 |
+
Determine the complexity of an image to guide model selection.
|
| 93 |
+
Returns complexity metrics.
|
| 94 |
+
"""
|
| 95 |
+
# Convert to numpy array
|
| 96 |
+
img_array = np.array(image.convert("L")) # Convert to grayscale for analysis
|
| 97 |
+
|
| 98 |
+
# Calculate image entropy (measure of randomness/information)
|
| 99 |
+
histogram = np.histogram(img_array, bins=256, range=(0, 256))[0]
|
| 100 |
+
histogram = histogram / histogram.sum()
|
| 101 |
+
non_zero = histogram > 0
|
| 102 |
+
entropy = -np.sum(histogram[non_zero] * np.log2(histogram[non_zero]))
|
| 103 |
+
|
| 104 |
+
# Calculate edge density using simple gradient method
|
| 105 |
+
gradient_x = np.abs(np.diff(img_array, axis=1, prepend=0))
|
| 106 |
+
gradient_y = np.abs(np.diff(img_array, axis=0, prepend=0))
|
| 107 |
+
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)
|
| 108 |
+
edge_density = np.mean(gradient_magnitude > 30) # Threshold for edge detection
|
| 109 |
+
|
| 110 |
+
# Get image size in pixels
|
| 111 |
+
size = image.width * image.height
|
| 112 |
+
|
| 113 |
+
return {
|
| 114 |
+
"entropy": float(entropy),
|
| 115 |
+
"edge_density": float(edge_density),
|
| 116 |
+
"size": size
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
def select_captioning_model(self, image: Image.Image) -> str:
|
| 120 |
+
"""
|
| 121 |
+
Select the appropriate captioning model based on image complexity.
|
| 122 |
+
Returns model type ("lightweight" or "advanced").
|
| 123 |
+
"""
|
| 124 |
+
# Get complexity metrics
|
| 125 |
+
complexity = self.determine_image_complexity(image)
|
| 126 |
+
|
| 127 |
+
# Decision logic for model selection
|
| 128 |
+
use_advanced = (
|
| 129 |
+
complexity["entropy"] > self.complexity_thresholds["entropy"] or
|
| 130 |
+
complexity["edge_density"] > self.complexity_thresholds["edge_density"] or
|
| 131 |
+
complexity["size"] > self.complexity_thresholds["size"]
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Log selection decision
|
| 135 |
+
model_type = "advanced" if use_advanced else "lightweight"
|
| 136 |
+
self.logger.info(f"Selected {model_type} model for image captioning (complexity: {complexity})")
|
| 137 |
+
|
| 138 |
+
# If metrics calculator is available, log model selection
|
| 139 |
+
if use_advanced and self.metrics_calculator:
|
| 140 |
+
# Estimate energy saved if we had used the advanced model
|
| 141 |
+
# This is a negative number since we're using more energy
|
| 142 |
+
energy_diff = -0.01 # Approximate difference in watt-hours
|
| 143 |
+
self.metrics_calculator.log_model_downgrade(
|
| 144 |
+
self.advanced_model_name, self.lightweight_model_name, energy_diff)
|
| 145 |
+
|
| 146 |
+
return model_type
|
| 147 |
+
|
| 148 |
+
def generate_image_caption(self, image: Union[str, Image.Image],
|
| 149 |
+
agent_name: str = "image_processing") -> Dict[str, Any]:
|
| 150 |
+
"""
|
| 151 |
+
Generate caption for an image, selecting appropriate model based on complexity.
|
| 152 |
+
Returns caption and metadata.
|
| 153 |
+
"""
|
| 154 |
+
# Handle string input (file path)
|
| 155 |
+
if isinstance(image, str):
|
| 156 |
+
if os.path.exists(image):
|
| 157 |
+
image = Image.open(image).convert('RGB')
|
| 158 |
+
else:
|
| 159 |
+
raise ValueError(f"Image file not found: {image}")
|
| 160 |
+
|
| 161 |
+
# Ensure image is PIL Image
|
| 162 |
+
if not isinstance(image, Image.Image):
|
| 163 |
+
raise TypeError("Image must be a PIL Image or a valid file path")
|
| 164 |
+
|
| 165 |
+
# Check cache if available
|
| 166 |
+
image_hash = str(hash(image.tobytes()))
|
| 167 |
+
if self.cache_manager:
|
| 168 |
+
cache_hit, cached_result = self.cache_manager.get(
|
| 169 |
+
image_hash, namespace="image_captions")
|
| 170 |
+
|
| 171 |
+
if cache_hit:
|
| 172 |
+
# Update metrics if available
|
| 173 |
+
if self.metrics_calculator:
|
| 174 |
+
self.metrics_calculator.update_cache_metrics(1, 0, 0.01) # Estimated energy saving
|
| 175 |
+
return cached_result
|
| 176 |
+
|
| 177 |
+
# Select model based on image complexity
|
| 178 |
+
model_type = self.select_captioning_model(image)
|
| 179 |
+
|
| 180 |
+
# Initialize selected model if needed
|
| 181 |
+
if model_type == "advanced":
|
| 182 |
+
if not self.initialized["advanced"]:
|
| 183 |
+
self.initialize_advanced_model()
|
| 184 |
+
|
| 185 |
+
processor = self.advanced_processor
|
| 186 |
+
model = self.advanced_model
|
| 187 |
+
model_name = self.advanced_model_name
|
| 188 |
+
else:
|
| 189 |
+
if not self.initialized["lightweight"]:
|
| 190 |
+
self.initialize_lightweight_model()
|
| 191 |
+
|
| 192 |
+
processor = self.lightweight_processor
|
| 193 |
+
model = self.lightweight_model
|
| 194 |
+
model_name = self.lightweight_model_name
|
| 195 |
+
|
| 196 |
+
# Process image
|
| 197 |
+
inputs = processor(image, return_tensors="pt")
|
| 198 |
+
|
| 199 |
+
# Request token budget if available
|
| 200 |
+
if self.token_manager:
|
| 201 |
+
# Estimate token usage (approximate)
|
| 202 |
+
estimated_tokens = 50 # Base tokens for generation
|
| 203 |
+
approved, reason = self.token_manager.request_tokens(
|
| 204 |
+
agent_name, "image_captioning", "", model_name)
|
| 205 |
+
|
| 206 |
+
if not approved:
|
| 207 |
+
self.logger.warning(f"Token budget exceeded: {reason}")
|
| 208 |
+
return {"caption": "Token budget exceeded", "error": reason}
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# Generate caption
|
| 212 |
+
with torch.no_grad():
|
| 213 |
+
if model_type == "advanced":
|
| 214 |
+
generated_ids = model.generate(
|
| 215 |
+
pixel_values=inputs.pixel_values,
|
| 216 |
+
max_new_tokens=50, # Using max_new_tokens instead of max_length
|
| 217 |
+
num_beams=5
|
| 218 |
+
)
|
| 219 |
+
caption = processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 220 |
+
else:
|
| 221 |
+
outputs = model.generate(
|
| 222 |
+
**inputs,
|
| 223 |
+
max_new_tokens=50, # Using max_new_tokens instead of max_length
|
| 224 |
+
num_beams=5
|
| 225 |
+
)
|
| 226 |
+
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
| 227 |
+
# # Generate caption
|
| 228 |
+
# with torch.no_grad():
|
| 229 |
+
# if model_type == "advanced":
|
| 230 |
+
# generated_ids = model.generate(
|
| 231 |
+
# pixel_values=inputs.pixel_values,
|
| 232 |
+
# max_length=30,
|
| 233 |
+
# num_beams=5
|
| 234 |
+
# )
|
| 235 |
+
# caption = processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 236 |
+
# else:
|
| 237 |
+
# outputs = model.generate(**inputs, max_length=30, num_beams=5)
|
| 238 |
+
# caption = processor.decode(outputs[0], skip_special_tokens=True)
|
| 239 |
+
|
| 240 |
+
# Prepare result
|
| 241 |
+
result = {
|
| 242 |
+
"caption": caption,
|
| 243 |
+
"model_used": model_type,
|
| 244 |
+
"complexity": self.determine_image_complexity(image),
|
| 245 |
+
"confidence": 0.9 if model_type == "advanced" else 0.7 # Estimated confidence
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
# Log token usage if available
|
| 249 |
+
if self.token_manager:
|
| 250 |
+
# Approximate token count based on output length
|
| 251 |
+
token_count = len(caption.split()) + 20 # Base tokens + output
|
| 252 |
+
self.token_manager.log_usage(
|
| 253 |
+
agent_name, "image_captioning", token_count, model_name)
|
| 254 |
+
|
| 255 |
+
# Log energy usage if metrics calculator is available
|
| 256 |
+
if self.metrics_calculator:
|
| 257 |
+
energy_usage = self.token_manager.calculate_energy_usage(
|
| 258 |
+
token_count, model_name)
|
| 259 |
+
self.metrics_calculator.log_energy_usage(
|
| 260 |
+
energy_usage, model_name, agent_name, "image_captioning")
|
| 261 |
+
|
| 262 |
+
# Store in cache if available
|
| 263 |
+
if self.cache_manager:
|
| 264 |
+
self.cache_manager.put(image_hash, result, namespace="image_captions")
|
| 265 |
+
|
| 266 |
+
return result
|
| 267 |
+
|
| 268 |
+
def match_images_to_topic(self, topic: str, image_captions: List[Dict[str, Any]],
|
| 269 |
+
text_model_manager=None) -> List[float]:
|
| 270 |
+
"""
|
| 271 |
+
Match image captions to the user's topic using semantic similarity.
|
| 272 |
+
Returns relevance scores for each image.
|
| 273 |
+
"""
|
| 274 |
+
if not text_model_manager:
|
| 275 |
+
self.logger.warning("No text model manager provided for semantic matching")
|
| 276 |
+
return [0.5] * len(image_captions) # Default mid-range relevance
|
| 277 |
+
|
| 278 |
+
# Extract captions
|
| 279 |
+
captions = [item["caption"] for item in image_captions]
|
| 280 |
+
|
| 281 |
+
# Use text model to compute similarity
|
| 282 |
+
similarities = text_model_manager.compute_similarity(topic, captions)
|
| 283 |
+
|
| 284 |
+
return similarities
|