Create visualization.py
Browse files- tools/visualization.py +240 -0
tools/visualization.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any, Optional, Tuple, Union
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import matplotlib
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
import numpy as np
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
# Configure matplotlib for non-interactive environments
|
11 |
+
matplotlib.use('Agg')
|
12 |
+
|
13 |
+
class VisualizationTools:
|
14 |
+
"""Tools for creating visualizations from CSV data."""
|
15 |
+
|
16 |
+
def __init__(self, csv_directory: str):
|
17 |
+
"""Initialize with directory containing CSV files."""
|
18 |
+
self.csv_directory = csv_directory
|
19 |
+
self.dataframes = {}
|
20 |
+
self.figure_size = (10, 6)
|
21 |
+
self.dpi = 100
|
22 |
+
|
23 |
+
def _load_dataframe(self, filename: str) -> pd.DataFrame:
|
24 |
+
"""Load a CSV file as DataFrame, with caching."""
|
25 |
+
if filename not in self.dataframes:
|
26 |
+
file_path = Path(self.csv_directory) / filename
|
27 |
+
if not file_path.exists() and not filename.endswith('.csv'):
|
28 |
+
file_path = Path(self.csv_directory) / f"{filename}.csv"
|
29 |
+
|
30 |
+
if file_path.exists():
|
31 |
+
self.dataframes[filename] = pd.read_csv(file_path)
|
32 |
+
else:
|
33 |
+
raise ValueError(f"CSV file not found: {filename}")
|
34 |
+
|
35 |
+
return self.dataframes[filename]
|
36 |
+
|
37 |
+
def get_tools(self) -> List[Dict[str, Any]]:
|
38 |
+
"""Get all available visualization tools."""
|
39 |
+
tools = [
|
40 |
+
{
|
41 |
+
"name": "create_line_chart",
|
42 |
+
"description": "Create a line chart from CSV data",
|
43 |
+
"function": self.create_line_chart
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"name": "create_bar_chart",
|
47 |
+
"description": "Create a bar chart from CSV data",
|
48 |
+
"function": self.create_bar_chart
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"name": "create_scatter_plot",
|
52 |
+
"description": "Create a scatter plot from CSV data",
|
53 |
+
"function": self.create_scatter_plot
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"name": "create_histogram",
|
57 |
+
"description": "Create a histogram from CSV data",
|
58 |
+
"function": self.create_histogram
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"name": "create_pie_chart",
|
62 |
+
"description": "Create a pie chart from CSV data",
|
63 |
+
"function": self.create_pie_chart
|
64 |
+
}
|
65 |
+
]
|
66 |
+
return tools
|
67 |
+
|
68 |
+
def _figure_to_base64(self, fig) -> str:
|
69 |
+
"""Convert matplotlib figure to base64 encoded string."""
|
70 |
+
buf = io.BytesIO()
|
71 |
+
fig.savefig(buf, format='png', dpi=self.dpi)
|
72 |
+
buf.seek(0)
|
73 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
74 |
+
plt.close(fig)
|
75 |
+
return img_str
|
76 |
+
|
77 |
+
# Visualization tool implementations
|
78 |
+
def create_line_chart(self, filename: str, x_column: str, y_column: str,
|
79 |
+
title: str = None, limit: int = 50) -> Dict[str, Any]:
|
80 |
+
"""Create a line chart visualization."""
|
81 |
+
df = self._load_dataframe(filename)
|
82 |
+
|
83 |
+
# Limit data points if needed
|
84 |
+
if len(df) > limit:
|
85 |
+
df = df.head(limit)
|
86 |
+
|
87 |
+
fig, ax = plt.subplots(figsize=self.figure_size)
|
88 |
+
|
89 |
+
# Create line chart
|
90 |
+
ax.plot(df[x_column], df[y_column], marker='o', linestyle='-')
|
91 |
+
|
92 |
+
# Set labels and title
|
93 |
+
ax.set_xlabel(x_column)
|
94 |
+
ax.set_ylabel(y_column)
|
95 |
+
ax.set_title(title or f"{y_column} vs {x_column}")
|
96 |
+
ax.grid(True)
|
97 |
+
|
98 |
+
# Convert to base64
|
99 |
+
img_str = self._figure_to_base64(fig)
|
100 |
+
|
101 |
+
return {
|
102 |
+
"chart_type": "line",
|
103 |
+
"x_column": x_column,
|
104 |
+
"y_column": y_column,
|
105 |
+
"data_points": len(df),
|
106 |
+
"image": img_str
|
107 |
+
}
|
108 |
+
|
109 |
+
def create_bar_chart(self, filename: str, x_column: str, y_column: str,
|
110 |
+
title: str = None, limit: int = 20) -> Dict[str, Any]:
|
111 |
+
"""Create a bar chart visualization."""
|
112 |
+
df = self._load_dataframe(filename)
|
113 |
+
|
114 |
+
# Limit categories if needed
|
115 |
+
if len(df) > limit:
|
116 |
+
df = df.head(limit)
|
117 |
+
|
118 |
+
fig, ax = plt.subplots(figsize=self.figure_size)
|
119 |
+
|
120 |
+
# Create bar chart
|
121 |
+
ax.bar(df[x_column], df[y_column])
|
122 |
+
|
123 |
+
# Set labels and title
|
124 |
+
ax.set_xlabel(x_column)
|
125 |
+
ax.set_ylabel(y_column)
|
126 |
+
ax.set_title(title or f"{y_column} by {x_column}")
|
127 |
+
|
128 |
+
# Rotate x labels if there are many categories
|
129 |
+
if len(df) > 5:
|
130 |
+
plt.xticks(rotation=45, ha='right')
|
131 |
+
|
132 |
+
plt.tight_layout()
|
133 |
+
|
134 |
+
# Convert to base64
|
135 |
+
img_str = self._figure_to_base64(fig)
|
136 |
+
|
137 |
+
return {
|
138 |
+
"chart_type": "bar",
|
139 |
+
"x_column": x_column,
|
140 |
+
"y_column": y_column,
|
141 |
+
"categories": len(df),
|
142 |
+
"image": img_str
|
143 |
+
}
|
144 |
+
|
145 |
+
def create_scatter_plot(self, filename: str, x_column: str, y_column: str,
|
146 |
+
color_column: str = None, title: str = None) -> Dict[str, Any]:
|
147 |
+
"""Create a scatter plot visualization."""
|
148 |
+
df = self._load_dataframe(filename)
|
149 |
+
|
150 |
+
fig, ax = plt.subplots(figsize=self.figure_size)
|
151 |
+
|
152 |
+
# Create scatter plot
|
153 |
+
if color_column and color_column in df.columns:
|
154 |
+
scatter = ax.scatter(df[x_column], df[y_column], c=df[color_column], cmap='viridis', alpha=0.7)
|
155 |
+
plt.colorbar(scatter, ax=ax, label=color_column)
|
156 |
+
else:
|
157 |
+
ax.scatter(df[x_column], df[y_column], alpha=0.7)
|
158 |
+
|
159 |
+
# Set labels and title
|
160 |
+
ax.set_xlabel(x_column)
|
161 |
+
ax.set_ylabel(y_column)
|
162 |
+
ax.set_title(title or f"{y_column} vs {x_column}")
|
163 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
164 |
+
|
165 |
+
# Convert to base64
|
166 |
+
img_str = self._figure_to_base64(fig)
|
167 |
+
|
168 |
+
return {
|
169 |
+
"chart_type": "scatter",
|
170 |
+
"x_column": x_column,
|
171 |
+
"y_column": y_column,
|
172 |
+
"color_column": color_column,
|
173 |
+
"data_points": len(df),
|
174 |
+
"image": img_str
|
175 |
+
}
|
176 |
+
|
177 |
+
def create_histogram(self, filename: str, column: str, bins: int = 10,
|
178 |
+
title: str = None) -> Dict[str, Any]:
|
179 |
+
"""Create a histogram visualization."""
|
180 |
+
df = self._load_dataframe(filename)
|
181 |
+
|
182 |
+
fig, ax = plt.subplots(figsize=self.figure_size)
|
183 |
+
|
184 |
+
# Create histogram
|
185 |
+
ax.hist(df[column], bins=bins, alpha=0.7, edgecolor='black')
|
186 |
+
|
187 |
+
# Set labels and title
|
188 |
+
ax.set_xlabel(column)
|
189 |
+
ax.set_ylabel('Frequency')
|
190 |
+
ax.set_title(title or f"Distribution of {column}")
|
191 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
192 |
+
|
193 |
+
# Convert to base64
|
194 |
+
img_str = self._figure_to_base64(fig)
|
195 |
+
|
196 |
+
return {
|
197 |
+
"chart_type": "histogram",
|
198 |
+
"column": column,
|
199 |
+
"bins": bins,
|
200 |
+
"data_points": len(df),
|
201 |
+
"image": img_str
|
202 |
+
}
|
203 |
+
|
204 |
+
def create_pie_chart(self, filename: str, label_column: str, value_column: str = None,
|
205 |
+
title: str = None, limit: int = 10) -> Dict[str, Any]:
|
206 |
+
"""Create a pie chart visualization."""
|
207 |
+
df = self._load_dataframe(filename)
|
208 |
+
|
209 |
+
# If value column not provided, count occurrences of each label
|
210 |
+
if value_column is None:
|
211 |
+
data = df[label_column].value_counts().head(limit)
|
212 |
+
labels = data.index.tolist()
|
213 |
+
values = data.values.tolist()
|
214 |
+
else:
|
215 |
+
# Group by label and sum values
|
216 |
+
grouped = df.groupby(label_column)[value_column].sum().reset_index()
|
217 |
+
# Limit to top categories
|
218 |
+
grouped = grouped.nlargest(limit, value_column)
|
219 |
+
labels = grouped[label_column].tolist()
|
220 |
+
values = grouped[value_column].tolist()
|
221 |
+
|
222 |
+
fig, ax = plt.subplots(figsize=self.figure_size)
|
223 |
+
|
224 |
+
# Create pie chart
|
225 |
+
ax.pie(values, labels=labels, autopct='%1.1f%%', startangle=90, shadow=True)
|
226 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
227 |
+
|
228 |
+
# Set title
|
229 |
+
ax.set_title(title or f"Distribution of {label_column}")
|
230 |
+
|
231 |
+
# Convert to base64
|
232 |
+
img_str = self._figure_to_base64(fig)
|
233 |
+
|
234 |
+
return {
|
235 |
+
"chart_type": "pie",
|
236 |
+
"label_column": label_column,
|
237 |
+
"value_column": value_column,
|
238 |
+
"categories": len(labels),
|
239 |
+
"image": img_str
|
240 |
+
}
|