Create index_manager.py
Browse files- indexes/index_manager.py +97 -0
indexes/index_manager.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Optional
|
2 |
+
from pathlib import Path
|
3 |
+
import os
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
|
9 |
+
from indexes.csv_index_builder import EnhancedCSVReader
|
10 |
+
|
11 |
+
class CSVIndexManager:
|
12 |
+
"""Manages creation and retrieval of indexes for CSV files."""
|
13 |
+
|
14 |
+
def __init__(self):
|
15 |
+
self.csv_reader = EnhancedCSVReader()
|
16 |
+
self.indexes = {}
|
17 |
+
self.vectorizer = TfidfVectorizer()
|
18 |
+
self.document_vectors = {}
|
19 |
+
self.all_documents = {}
|
20 |
+
|
21 |
+
def create_index(self, file_path: str) -> bool:
|
22 |
+
"""Create index for a CSV file."""
|
23 |
+
# Extract filename as identifier
|
24 |
+
file_id = Path(file_path).stem
|
25 |
+
|
26 |
+
# Load documents with metadata
|
27 |
+
try:
|
28 |
+
documents = self.csv_reader.load_data(file_path)
|
29 |
+
|
30 |
+
# Store documents
|
31 |
+
self.all_documents[file_id] = documents
|
32 |
+
|
33 |
+
# Create document content for vectorization
|
34 |
+
doc_contents = [doc["content"] for doc in documents]
|
35 |
+
|
36 |
+
# Vectorize documents
|
37 |
+
if doc_contents:
|
38 |
+
# If this is our first document, fit the vectorizer
|
39 |
+
if not self.document_vectors:
|
40 |
+
vectors = self.vectorizer.fit_transform(doc_contents)
|
41 |
+
else:
|
42 |
+
# Otherwise, use the existing vocabulary
|
43 |
+
vectors = self.vectorizer.transform(doc_contents)
|
44 |
+
|
45 |
+
self.document_vectors[file_id] = vectors
|
46 |
+
|
47 |
+
# Store metadata
|
48 |
+
self.indexes[file_id] = {
|
49 |
+
"metadata": documents[0]["metadata"] if documents else {},
|
50 |
+
"path": file_path
|
51 |
+
}
|
52 |
+
|
53 |
+
return True
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error creating index for {file_path}: {e}")
|
57 |
+
return False
|
58 |
+
|
59 |
+
def index_directory(self, directory_path: str) -> Dict[str, bool]:
|
60 |
+
"""Index all CSV files in a directory."""
|
61 |
+
indexed_files = {}
|
62 |
+
|
63 |
+
# Get all CSV files in directory
|
64 |
+
csv_files = [f for f in os.listdir(directory_path)
|
65 |
+
if f.lower().endswith('.csv')]
|
66 |
+
|
67 |
+
# Create index for each CSV file
|
68 |
+
for csv_file in csv_files:
|
69 |
+
file_path = os.path.join(directory_path, csv_file)
|
70 |
+
file_id = Path(file_path).stem
|
71 |
+
success = self.create_index(file_path)
|
72 |
+
indexed_files[file_id] = success
|
73 |
+
|
74 |
+
return indexed_files
|
75 |
+
|
76 |
+
def find_relevant_csvs(self, query: str, top_k: int = 3) -> List[str]:
|
77 |
+
"""Find most relevant CSV files for a given query."""
|
78 |
+
if not self.indexes:
|
79 |
+
return []
|
80 |
+
|
81 |
+
# Vectorize the query
|
82 |
+
query_vector = self.vectorizer.transform([query])
|
83 |
+
|
84 |
+
# Calculate similarity with each CSV's content
|
85 |
+
similarities = {}
|
86 |
+
for file_id, vectors in self.document_vectors.items():
|
87 |
+
# Calculate max similarity across all documents in this CSV
|
88 |
+
file_similarities = cosine_similarity(query_vector, vectors).flatten()
|
89 |
+
similarities[file_id] = np.max(file_similarities)
|
90 |
+
|
91 |
+
# Sort by similarity and return top_k
|
92 |
+
sorted_files = sorted(similarities.items(), key=lambda x: x[1], reverse=True)
|
93 |
+
return [file_id for file_id, _ in sorted_files[:top_k]]
|
94 |
+
|
95 |
+
def get_documents(self, file_id: str) -> List[Dict]:
|
96 |
+
"""Get all documents for a specific CSV file."""
|
97 |
+
return self.all_documents.get(file_id, [])
|