Create query_engine.py
Browse files- indexes/query_engine.py +105 -0
indexes/query_engine.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any, Optional
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class CSVQueryEngine:
|
7 |
+
"""Query engine for CSV data with multi-file support."""
|
8 |
+
|
9 |
+
def __init__(self, index_manager, llm):
|
10 |
+
"""Initialize with index manager and language model."""
|
11 |
+
self.index_manager = index_manager
|
12 |
+
self.llm = llm
|
13 |
+
|
14 |
+
def query(self, query_text: str) -> Dict[str, Any]:
|
15 |
+
"""Process a natural language query across CSV files."""
|
16 |
+
# Find relevant CSV files
|
17 |
+
relevant_csvs = self.index_manager.find_relevant_csvs(query_text)
|
18 |
+
|
19 |
+
if not relevant_csvs:
|
20 |
+
return {
|
21 |
+
"answer": "No relevant CSV files found for your query.",
|
22 |
+
"sources": []
|
23 |
+
}
|
24 |
+
|
25 |
+
# Prepare context from relevant CSVs
|
26 |
+
context = self._prepare_context(query_text, relevant_csvs)
|
27 |
+
|
28 |
+
# Generate prompt
|
29 |
+
prompt = self._generate_prompt(query_text, context)
|
30 |
+
|
31 |
+
# Get response from LLM
|
32 |
+
response = self.llm.complete(prompt)
|
33 |
+
|
34 |
+
# Return formatted response
|
35 |
+
return {
|
36 |
+
"answer": response.text,
|
37 |
+
"sources": self._get_sources(relevant_csvs)
|
38 |
+
}
|
39 |
+
|
40 |
+
def _prepare_context(self, query: str, csv_ids: List[str]) -> str:
|
41 |
+
"""Prepare context from relevant CSV files."""
|
42 |
+
context_parts = []
|
43 |
+
|
44 |
+
for csv_id in csv_ids:
|
45 |
+
# Get metadata
|
46 |
+
if csv_id not in self.index_manager.indexes:
|
47 |
+
continue
|
48 |
+
|
49 |
+
metadata = self.index_manager.indexes[csv_id]["metadata"]
|
50 |
+
file_path = self.index_manager.indexes[csv_id]["path"]
|
51 |
+
|
52 |
+
# Add CSV metadata
|
53 |
+
context_parts.append(f"CSV File: {metadata['filename']}")
|
54 |
+
context_parts.append(f"Columns: {', '.join(metadata['columns'])}")
|
55 |
+
context_parts.append(f"Row Count: {metadata['row_count']}")
|
56 |
+
|
57 |
+
# Add sample data
|
58 |
+
try:
|
59 |
+
df = pd.read_csv(file_path)
|
60 |
+
context_parts.append("\nSample Data:")
|
61 |
+
context_parts.append(df.head(5).to_string())
|
62 |
+
|
63 |
+
# Add some basic statistics that might be relevant
|
64 |
+
context_parts.append("\nNumeric Column Statistics:")
|
65 |
+
numeric_cols = df.select_dtypes(include=['number']).columns
|
66 |
+
for col in numeric_cols:
|
67 |
+
stats = df[col].describe()
|
68 |
+
context_parts.append(f"{col} - mean: {stats['mean']:.2f}, min: {stats['min']:.2f}, max: {stats['max']:.2f}")
|
69 |
+
except Exception as e:
|
70 |
+
context_parts.append(f"Error reading CSV: {str(e)}")
|
71 |
+
|
72 |
+
return "\n\n".join(context_parts)
|
73 |
+
|
74 |
+
def _generate_prompt(self, query: str, context: str) -> str:
|
75 |
+
"""Generate a prompt for the LLM."""
|
76 |
+
return f"""You are an AI assistant specialized in analyzing CSV data.
|
77 |
+
Your goal is to help users understand their data and extract insights.
|
78 |
+
|
79 |
+
Below is information about CSV files that might help answer the query:
|
80 |
+
|
81 |
+
{context}
|
82 |
+
|
83 |
+
User Query: {query}
|
84 |
+
|
85 |
+
Please provide a comprehensive and accurate answer based on the data.
|
86 |
+
If calculations are needed, explain your process.
|
87 |
+
If the data doesn't contain information to answer the query, say so clearly.
|
88 |
+
|
89 |
+
Answer:"""
|
90 |
+
|
91 |
+
def _get_sources(self, csv_ids: List[str]) -> List[Dict[str, str]]:
|
92 |
+
"""Get source information for the response."""
|
93 |
+
sources = []
|
94 |
+
|
95 |
+
for csv_id in csv_ids:
|
96 |
+
if csv_id not in self.index_manager.indexes:
|
97 |
+
continue
|
98 |
+
|
99 |
+
metadata = self.index_manager.indexes[csv_id]["metadata"]
|
100 |
+
sources.append({
|
101 |
+
"csv": metadata["filename"],
|
102 |
+
"columns": ", ".join(metadata["columns"][:5]) + ("..." if len(metadata["columns"]) > 5 else "")
|
103 |
+
})
|
104 |
+
|
105 |
+
return sources
|