import streamlit as st from PIL import Image import io import numpy as np # Import our custom modules from utils.image_preprocessing import preprocess_image from models.document_ai import extract_text_and_layout from models.text_processor import process_menu_text # App title and description st.title("Menu to Braille Converter") st.write("Upload a menu image to convert it to Braille text") # Sidebar for model settings st.sidebar.header("Settings") use_llm = st.sidebar.checkbox("Use LLM for text processing", value=True) # Add information about the application st.sidebar.markdown("---") st.sidebar.subheader("About") st.sidebar.info( "This application converts menu images to Braille text using AI. " "It extracts text from images using document AI, processes the text with LLMs, " "and will convert to Braille in future versions." ) # File uploader uploaded_file = st.file_uploader("Choose a menu image...", type=["jpg", "jpeg", "png"]) # Display uploaded image and process it if uploaded_file is not None: # Load and display image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Menu", use_column_width=True) # Add a button to process the image if st.button("Process Menu"): with st.spinner("Processing image..."): # Preprocess the image preprocessed_img = preprocess_image(image) # Extract text using LayoutLMv2 try: result = extract_text_and_layout(preprocessed_img) # Display extracted words if result['words']: raw_text = ' '.join(result['words']) # Show raw text in an expandable section with st.expander("Raw Extracted Text"): st.text_area("Raw OCR Output", raw_text, height=150) # Process text with LLM if enabled if use_llm: st.subheader("Processed Menu Text") with st.spinner("Enhancing text with AI..."): processed_result = process_menu_text(raw_text) if processed_result['success']: st.text_area("Structured Menu Text", processed_result['structured_text'], height=300) # Store the processed result for later use st.session_state.processed_text = processed_result['structured_text'] st.session_state.menu_data = processed_result.get('menu_data', {}) else: st.warning(f"AI processing failed: {processed_result.get('error', 'Unknown error')}") st.text_area("Text Output", raw_text, height=300) st.session_state.processed_text = raw_text else: # Just use the raw text st.subheader("Extracted Text") st.text_area("Text Output", raw_text, height=300) st.session_state.processed_text = raw_text else: st.warning("No text was extracted from the image.") except Exception as e: st.error(f"Error processing image: {str(e)}") # Placeholders for future functionality st.subheader("Braille Translation") st.info("Braille translation will be implemented in Phase 4") st.subheader("Download Options") st.info("PDF download will be implemented in Phase 5")